Eukleidész-féle szám

Ez a szócikk nem tünteti fel a független forrásokat, amelyeket felhasználtak a készítése során. Emiatt nem tudjuk közvetlenül ellenőrizni, hogy a szócikkben szereplő állítások helytállóak-e. Segíts megbízható forrásokat találni az állításokhoz! Lásd még: A Wikipédia nem az első közlés helye.

Az Eukleidész-féle számok En = pn# + 1 alakú pozitív egész számok, ahol pn# az n-edik primoriális, tehát az első n prímszám szorzata.

Eukleidész bizonyítása

Eukleidész több mint 2000 évvel ezelőtt bebizonyította: végtelen sok prímszám létezik. A bizonyításban fontos szerep jut az Eukleidész-féle számnak.

A matematikában prímszámnak (törzsszám) nevezik azokat a természetes számokat, amelyeknek csak két osztójuk van a természetes számok között (maga a szám és az 1). Eukleidész az Elemek IX. könyvében, a 20. tételben bizonyította, hogy a prímszámoknak nincs határa.

Eukleidész-féle számot úgy kapunk, hogy veszünk egy prímszámot, ez legyen P.

Összeszorozzuk egymással a P-nél nem nagyobb prímszámokat, és a szorzathoz még hozzáadunk 1-et. Képlettel, egy Eukleidész-féle szám, N:

N = ( 2 3 5 7 . . . P ) + 1 {\displaystyle N=(2\cdot 3\cdot 5\cdot 7\cdot ...\cdot P)+1}

Ha például a P=13 prímszámot vesszük, akkor az ahhoz tartozó Eukleidész-féle N szám nem prím, hanem összetett szám:

N = ( 2 3 5 7 11 13 ) + 1 = 30031 = 59 509 {\displaystyle N=(2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13)+1=30031=59\cdot 509}

Az Eukleidész-féle számok között igen ritka a prímszám, a következő, az N=2 000 560 490 131, a P=31 értékhez tartozik. A rá következőt csak a P=379 számnál kapjuk….

A bizonyítás menete:

Vegyünk egy tetszőleges P prímszámot.

Azt szeretnénk bizonyítani, hogy P után is van még prímszám. Az Eukleidész-féle szám, N:

N = ( 2 3 5 7 . . . P ) + 1 {\displaystyle N=(2\cdot 3\cdot 5\cdot 7\cdot ...\cdot P)+1} vagy prím, vagy nem prím, hiszen nem ismerjük a P értékét. Ha N prímszám, akkor máris akadt P-nél nagyobb prím, hiszen N nyilván nagyobb P-nél. De akkor sincs veszve semmi, ha N összetett szám volna. Ha ugyanis N-et elosztjuk 2-vel, 3-mal, 5-tel, 7-tel, ….P-vel, mindig marad 1, vagyis ezek a prímek nem osztói az N-nek.

Az aritmetika alaptételéből tudható, hogy N-nek osztható kell lennie valamilyen prímszámmal, és mivel ez az osztó prímszám nem 2, nem 3, nem 7,…nem P, ezért nagyobbnak kell lennie P-nél. Ez lesz tehát az általunk keresett, P-nél nagyobb prímszám.

Ezzel tehát bebizonyítottuk, hogy bármely P prímszámnál van nagyobb prímszám---vagyis a prímszámok sorozata végtelen!.

Irodalom

  • Tony Crilly: Nagy Kérdések, Matematika. (hely nélkül): Geographia Kiadó. 2007.  

További információk

  • http://sdt.sulinet.hu/Player/Default.aspx?g=65a095ea-35dc-47db-9428-a01855ad1284&cid=fc131705-2f72-49bc-ab40-f83953455a25[halott link]

Kapcsolódó szócikkek

Sablon:Prímszámok osztályozása
  • m
  • v
  • sz
Prímszámok osztályozása
Képlet alapján
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Dupla Mersenne (22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Proth (k·2n + 1)
  • Faktoriális (n! ± 1)
  • Primoriális (pn# ± 1)
  • Eukleidész (pn# + 1)
  • Pitagoraszi (4n + 1)
  • Pierpont (2u·3v + 1)
  • Kvartikus prímek (x4 + y4)
  • Solinas (2a ± 2b ± 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Köbös (x3 − y3)/(x − y)
  • Carol (2n − 1)2 − 2
  • Kynea (2n + 1)2 − 2
  • Leyland (xy + yx)
  • Szábit (3·2n ± 1)
  • Mills (floor(A3n))
Számsorozat alapján
Tulajdonság alapján
Számrendszerfüggő
  • Boldog
  • Diéder
  • Palindrom
  • Mírp
  • Repunit (10n − 1)/9
  • Permutálható
  • Körkörös
  • Csonkolható
  • Középpontosan tükrös
  • Minimális
  • Gyenge
  • Full reptend
  • Unikális
  • Primeval
  • Önös
  • Smarandache–Wellin
Mintázatok
  • Iker (p, p + 2)
  • Ikerprímlánc (n − 1, n + 1, 2n − 1, 2n + 1, …)
  • Prímhármas (p, p + 2 vagy p + 4, p + 6)
  • Prímnégyes (p, p + 2, p + 6, p + 8)
  • prím n−es
  • Unokatestvér (p, p + 4)
  • Szexi (p, p + 6)
  • Chen
  • Sophie Germain (p, 2p + 1)
  • Cunningham-lánc (p, 2p ± 1, …)
  • Biztonságos (p, (p − 1)/2)
  • Számtani sorozatban (p + a·n, n = 0, 1, …)
  • Kiegyensúlyozott (egymást követő p − n, p, p + n)
Méret alapján
  • Titáni (1000+ számjegy)
  • Gigantikus (10 000+)
  • Mega (1 000 000+)
  • Ismert legnagyobb
Komplex számok
Összetett számok
Kapcsolódó fogalmak
Az első 100 prím
  • 2
  • 3
  • 5
  • 7
  • 11
  • 13
  • 17
  • 19
  • 23
  • 29
  • 31
  • 37
  • 41
  • 43
  • 47
  • 53
  • 59
  • 61
  • 67
  • 71
  • 73
  • 79
  • 83
  • 89
  • 97
  • 101
  • 103
  • 107
  • 109
  • 113
  • 127
  • 131
  • 137
  • 139
  • 149
  • 151
  • 157
  • 163
  • 167
  • 173
  • 179
  • 181
  • 191
  • 193
  • 197
  • 199
  • 211
  • 223
  • 227
  • 229
  • 233
  • 239
  • 241
  • 251
  • 257
  • 263
  • 269
  • 271
  • 277
  • 281
  • 283
  • 293
  • 307
  • 311
  • 313
  • 317
  • 331
  • 337
  • 347
  • 349
  • 353
  • 359
  • 367
  • 373
  • 379
  • 383
  • 389
  • 397
  • 401
  • 409
  • 419
  • 421
  • 431
  • 433
  • 439
  • 443
  • 449
  • 457
  • 461
  • 463
  • 467
  • 479
  • 487
  • 491
  • 499
  • 503
  • 509
  • 521
  • 523
  • 541
Sablon:Természetes számok
  • m
  • v
  • sz
Természetes számok osztályozása
Hatványok és
kapcsolódó számok
a × 2b ± 1
alakú számok
Egyéb polinomikus
számok
Rekurzívan megadott
számok
Possessing a
specific set
of other numbers
Specifikus összegekkel
kifejezhető számok
Szitával
generált számok
Kódokkal kapcsolatos
  • Meertens
Figurális számok
2 dimenziós
3 dimenziós
középpontos
nem középpontos
középpontos
  • Középpontos pentatóp-
  • Négyzetes háromszög
nem középpontos
  • Pentatóp-
Álprímek
Kombinatorikus
számok
  • Bell
  • Cake
  • Catalan
  • Dedekind
  • Delannoy
  • Euler
  • Fuss–Catalan
  • Lusta ételszállító-sorozat
  • Lobb
  • Motzkin
  • Narayana
  • Rendezett Bell
  • Schröder
  • Schröder–Hipparchus
Számelméleti függvények
σ(n) alapján
Ω(n) alapján
φ(n) alapján
s(n)
Egyéb kongruenciák
  • Wieferich
  • Wall–Sun–Sun
  • Wolstenholme-prím
  • Wilson
  • Egyéb prímtényezővel
    vagy osztóval kapcsolatos
    számok
    Szórakoztató
    matematika
    Számrendszerfüggő
    számok