Sima számok

A számelmélet területén a sima számok (smooth or friable numbers) olyan egész számok, melyek prímtényezői mind kis prímszámok. A kifejezést valószínűleg Leonard Adleman alkotta meg.[1] A sima számok különösen fontosak a kriptográfia faktorizációval kapcsolatos alkalmazásaiban. A 2-sima számok egyszerűen kettő hatványai.

Meghatározás

Egy pozitív egész szám B-sima, ha egyetlen prímtényezője sem nagyobb B-nél. Például az 1620 prímtényezős felbontása 22 · 34 · 5; ezért 1620 5-sima, mivel egyetlen prímtényezője sem nagyobb 5-nél. A definíció megengedi, hogy a sima számból egyes kisebb prímtényezők hiányozzanak; például a 10 és a 12 is 5-sima szám, pedig hiányzik belőlük a 3, illetve az 5 mint prímtényező. Az 5-sima számokat reguláris számoknak vagy Hamming-számoknak is hívják; a 7-sima számokat szerény számoknak is hívják, néha pedig erősen összetettnek,[2] bár ez ütközik az erősen összetett számok általánosan elfogadott definíciójával.

Vegyük észre, hogy B nem feltétlenül prím. Ha egy szám legnagyobb prímtényezője p, akkor a szám B-sima bármely Bp esetben. Általában a megadott B prímszám, de összetett szám is lehet. Egy szám akkor és csak akkor B-sima, ha p-sima, ahol p a B-nél nem nagyobb prímszámok közül a legnagyobb.

Alkalmazásai

A sima számok fontos gyakorlati alkalmazást nyernek a különböző gyors Fourier-transzformációs (FFT) algoritmusokban, mint amilyen a Cooley–Tukey-algoritmus, ami egy n nagyságú problémát rekurzívan a prímtényezőinak megfelelő méretű problémákra bont fel. B-sima számok használatával be lehet biztosítani, hogy a rekurzív algoritmus kis prímekre bontja fel a számot, amikre már léteznek hatékony algoritmusok. (A nagy prímszámok kevésbé hatékony algoritmusokat igényelnek, mint amilyen a Bluestein-algoritmus.)

Az 5-sima vagy szabályos számok különleges szerepet játszanak a babiloni matematikában.[3] Fontosak továbbá a zeneelméletben.[4] az ilyen számok hatékony előállítása pedig gyakori tesztfeladat a funkcionális programozásban.[5]

A sima számoknak van néhány alkalmazásuk a kriptográfia területén is.[6] Bár ezek főleg a kriptoanalízist szolgálják (pl. a leggyorsabb ismert faktorizációs algoritmusok), a VSH (very smooth hash) függvény a simaság konstruktív használatára példa, melynek segítségével bizonyíthatóan biztonságos hash függvényt terveztek.

Eloszlásuk

Jelölje Ψ ( x , y ) {\displaystyle \scriptstyle \Psi (x,y)} az x-nél nem nagyobb y-sima egészek számát (De Bruijn-függvény).

Ha a B simasági korlát kicsi és állandó, akkor létezik jó becslés Ψ ( x , B ) {\displaystyle \scriptstyle \Psi (x,B)} -re:

Ψ ( x , B ) 1 π ( B ) ! p B log x log p . {\displaystyle \Psi (x,B)\sim {\frac {1}{\pi (B)!}}\prod _{p\leq B}{\frac {\log x}{\log p}}.}

ahol π ( B ) {\displaystyle \scriptstyle {\pi (B)}} a B {\displaystyle \scriptstyle B} -nél nem nagyobb prímek számát jelöli.

Máskülönben, vezessük be az u paramétert, ahol u = log x / log y: tehát, x = yu. Ekkor,

Ψ ( x , y ) = x ρ ( u ) + O ( x log y ) {\displaystyle \Psi (x,y)=x\cdot \rho (u)+O\left({\frac {x}{\log y}}\right)}

ahol ρ ( u ) {\displaystyle \scriptstyle \rho (u)} a Dickman-függvény.

Hatványsima számok

Továbbá, az m szám B-hatványsima (B-powersmooth), ha minden m-et osztó p ν {\displaystyle \scriptstyle p^{\nu }} prímhatványára igaz, hogy:

p ν B . {\displaystyle p^{\nu }\leq B.\,}

Például a 720 (243251) 5-sima, de nem 5-hatványsima (mert több prímhatvány-osztó is nagyobb 5-nél, például 3 2 = 9 5 {\displaystyle 3^{2}=9\nleq 5} vagy 2 3 > 5 {\displaystyle 2^{3}>5} ). Elmondható viszont, hogy 16-hatványsima, mivel 720 legnagyobb prímhatványosztója 24 = 16. Természetesen szintén 17-hatványsima, 18-hatványsima stb.

A B-sima és B-hatványsima számok számelméleti jelentősége például a Pollard-féle p − 1 algoritmusban van. Az ilyen jellegű alkalmazások gyakran „sima számokkal” működnek B specifikálása nélkül; ez úgy értendő, hogy a számok B-hatványsimák valamely nem meghatározott kicsi B számra; ahogy B növekszik, az algoritmus vagy módszer hatékonysága gyors ütemben csökken. Például a diszkrét logaritmus számítására használt Pohlig–Hellman-algoritmus futási ideje B-sima rendű csoportokra O(B1/2).

Kapcsolódó szócikkek

Jegyzetek

  1. M. E. Hellman, J. M. Reyneri, "Fast computation of discrete logarithms in GF (q)", in Advances in Cryptology: Proceedings of CRYPTO '82 (eds. D. Chaum, R. Rivest, A. Sherman), New York: Plenum Press, 1983, p. 3–13, online quote at Google Scholar: "Adleman refers to integers which factor completely into small primes as “smooth” numbers."
  2. Sloane's A002473: 7-smooth numbers
  3. Aaboe, Asger (1965), "Some Seleucid mathematical tables (extended reciprocals and squares of regular numbers)", Journal of Cuneiform Studies 19 (3): 79–86, DOI 10.2307/1359089.
  4. Longuet-Higgins, H. C. (1962), "Letter to a musical friend", Music Review (no. August): 244–248.
  5. Dijkstra, Edsger W. (1981), Hamming's exercise in SASL, Report EWD792. Originally a privately circulated handwitten note, <http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD792.PDF>.
  6. David Naccache, Igor Shparlinski, "Divisibility, Smoothness and Cryptographic Applications", http://eprint.iacr.org/2008/437.pdf

Irodalom

  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, (AMS, 2015) ISBN 978-0821898543
  • A. Granville, Smooth numbers: Computational number theory and beyond, Proc. of MSRI workshop, 2008

További információk

  • Weisstein, Eric W.: Smooth Number (angol nyelven). Wolfram MathWorld

Az On-Line Encyclopedia of Integer Sequences (OEIS) listázza a B-sima számokat néhány kis B értékre:

  • 2-sima számok: A000079 (2i)
  • 3-sima számok: A003586 (2i3j)
  • 5-sima számok: A051037 (2i3j5k)
  • 7-sima számok: A002473 (2i3j5k7l)
  • 11-sima számok: A051038 (etc...)
  • 13-sima számok: A080197
  • 17-sima számok: A080681
  • 19-sima számok: A080682
  • 23-sima számok: A080683
Sablon:Osztóosztályok
  • m
  • v
  • sz
Az egész számok oszthatóságon alapuló csoportosítása
Áttekintés
60 osztói
Prímtényezős felbontás
Osztóösszegek
Sok osztóval rendelkező
Osztóösszeg-sorozattal kapcsolatos
Egyéb csoportok
Sablon:Természetes számok
  • m
  • v
  • sz
Természetes számok osztályozása
Hatványok és
kapcsolódó számok
a × 2b ± 1
alakú számok
Egyéb polinomikus
számok
Rekurzívan megadott
számok
Possessing a
specific set
of other numbers
Specifikus összegekkel
kifejezhető számok
Szitával
generált számok
Kódokkal kapcsolatos
  • Meertens
Figurális számok
2 dimenziós
3 dimenziós
középpontos
nem középpontos
középpontos
  • Középpontos pentatóp-
  • Négyzetes háromszög
nem középpontos
  • Pentatóp-
Álprímek
Kombinatorikus
számok
  • Bell
  • Cake
  • Catalan
  • Dedekind
  • Delannoy
  • Euler
  • Fuss–Catalan
  • Lusta ételszállító-sorozat
  • Lobb
  • Motzkin
  • Narayana
  • Rendezett Bell
  • Schröder
  • Schröder–Hipparchus
Számelméleti függvények
σ(n) alapján
Ω(n) alapján
φ(n) alapján
s(n)
Egyéb kongruenciák
  • Wieferich
  • Wall–Sun–Sun
  • Wolstenholme-prím
  • Wilson
  • Egyéb prímtényezővel
    vagy osztóval kapcsolatos
    számok
    Szórakoztató
    matematika
    Számrendszerfüggő
    számok