Dihexa

Chemical compound
l-tyrosyl-N-(6-amino-6-oxohexyl)-l-isoleucinamideIdentifiers
  • 6-[(2S,3S)-2-[(2S)-2-hexanamido-3-(4-hydroxyphenyl)propanamido]-3-methylpentanamido]hexanamide
CAS Number
  • 1401708-83-5
PubChem CID
  • 129010512
ChemSpider
  • 57582587
UNII
  • 9WYX65A5C2
Chemical and physical dataFormulaC27H44N4O5Molar mass504.672 g·mol−13D model (JSmol)
  • Interactive image
  • CCCCCC(=O)N[C@@H](Cc1ccc(O)cc1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCCCCCC(N)=O
InChI
  • InChI=1S/C27H44N4O5/c1-4-6-8-12-24(34)30-22(18-20-13-15-21(32)16-14-20)26(35)31-25(19(3)5-2)27(36)29-17-10-7-9-11-23(28)33/h13-16,19,22,25,32H,4-12,17-18H2,1-3H3,(H2,28,33)(H,29,36)(H,30,34)(H,31,35)/t19-,22-,25-/m0/s1
  • Key:XEUVNVNAVKZSPT-JTJYXVOQSA-N

Dihexa (developmental code name PNB-0408), also known as N-hexanoic-Tyr-Ile-(6) aminohexanoic amide, is an oligopeptide drug derived from angiotensin IV that binds with high affinity to hepatocyte growth factor (HGF) and potentiates its activity at its receptor, c-Met. The compound has been found to potently improve cognitive function in animal models of Alzheimer's disease-like mental impairment.[1][2][3][4][5][6][7][8][9][10] In an assay of neurotrophic activity, Dihexa was found to be seven orders of magnitude more potent than brain-derived neurotrophic factor.[11]

According to a patent, "Short duration safety studies with Dihexa have uncovered no apparent toxicity. Of particular note is a lack of neoplastic induction[citation needed], since c-Met is recognized as an oncogene. This is unsurprising since oncogenesis requires multiple mutations including both oncogene induction and tumor suppressor attenuation."[12][citation needed]

History

Dihexa was developed by Joseph Harding and his team at Washington State University.[13] Later developments were done under "M3 Biotechnology", a company founded to commercialise Dihexa.[14]

References

  1. ^ US 8598118, Harding JW, Wright JW, Benoist CC, Kawas LH, Wayman GA, "Hepatocyte growth factor mimics as therapeutic agents" 
  2. ^ McCoy AT, Benoist CC, Wright JW, Kawas LH, Bule-Ghogare JM, Zhu M, et al. (January 2013). "Evaluation of metabolically stabilized angiotensin IV analogs as procognitive/antidementia agents". The Journal of Pharmacology and Experimental Therapeutics. 344 (1): 141–154. doi:10.1124/jpet.112.199497. PMC 3533412. PMID 23055539.
  3. ^ Benoist CC, Kawas LH, Zhu M, Tyson KA, Stillmaker L, Appleyard SM, et al. (November 2014). "The procognitive and synaptogenic effects of angiotensin IV-derived peptides are dependent on activation of the hepatocyte growth factor/c-met system". The Journal of Pharmacology and Experimental Therapeutics. 351 (2): 390–402. doi:10.1124/jpet.114.218735. PMC 4201273. PMID 25187433.
  4. ^ Benoist CC, Wright JW, Zhu M, Appleyard SM, Wayman GA, Harding JW (October 2011). "Facilitation of hippocampal synaptogenesis and spatial memory by C-terminal truncated Nle1-angiotensin IV analogs". The Journal of Pharmacology and Experimental Therapeutics. 339 (1): 35–44. doi:10.1124/jpet.111.182220. PMC 3186286. PMID 21719467.
  5. ^ Uribe PM, Kawas LH, Harding JW, Coffin AB (January 2015). "Hepatocyte growth factor mimetic protects lateral line hair cells from aminoglycoside exposure". Frontiers in Cellular Neuroscience. 9 (3): 3. doi:10.3389/fncel.2015.00003. PMC 4309183. PMID 25674052.
  6. ^ Wright JW, Harding JW (January 2015). "The Brain Hepatocyte Growth Factor/c-Met Receptor System: A New Target for the Treatment of Alzheimer's Disease". Journal of Alzheimer's Disease. 45 (4): 985–1000. doi:10.3233/JAD-142814. PMID 25649658.
  7. ^ Siller R, Greenhough S, Naumovska E, Sullivan GJ (May 2015). "Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells". Stem Cell Reports. 4 (5): 939–952. doi:10.1016/j.stemcr.2015.04.001. PMC 4437467. PMID 25937370.
  8. ^ "32. The Innovators: Designing Medicine's Holy Grail". KOMO News. 27 August 2015. Retrieved 11 October 2015.
  9. ^ "Brain Connections in Alzheimer's Rebuilt with New Peptide". GEN News Highlights. 11 October 2015. Retrieved 11 October 2015.
  10. ^ "Brain-Enhancing 'Smart Drugs' Are Going Commercial". VICE. 17 July 2014. Retrieved 11 October 2015.
  11. ^ "Prospective Alzheimer's drug builds new brain cell connections, improves cognitive function of rats". ScienceDaily. 11 October 2012. Retrieved 11 October 2015.
  12. ^ US patent 0337024, Allison Coffin, Joseph Harding, Leen Kawas, Phillip Uribe, "Novel Lead Compound for Otoprotection: Targeting HGF Signaling with Dihexa", issued 2015-11-26 
  13. ^ "Dihexa" (PDF). Alzheimer's Drug Discovery Foundation. August 13, 2021.
  14. ^ "Fosgonimeton | ALZFORUM". www.alzforum.org. Retrieved 2023-04-20.
  • v
  • t
  • e
Angiopoietin
  • Kinase inhibitors: Altiratinib
  • CE-245677
  • Rebastinib
CNTF
EGF (ErbB)
EGF
(ErbB1/HER1)
ErbB2/HER2
  • Agonists: Unknown/none
ErbB3/HER3
ErbB4/HER4
FGF
FGFR1
FGFR2
  • Antibodies: Aprutumab
  • Aprutumab ixadotin
FGFR3
FGFR4
Unsorted
HGF (c-Met)
  • Potentiators: Dihexa (PNB-0408)
IGF
IGF-1
  • Kinase inhibitors: BMS-754807
  • Linsitinib
  • NVP-ADW742
  • NVP-AEW541
  • OSl-906
IGF-2
  • Antibodies: Dusigitumab
  • Xentuzumab (against IGF-1 and IGF-2)
Others
  • Cleavage products/derivatives with unknown target: Glypromate (GPE, (1-3)IGF-1)
  • Trofinetide
LNGF (p75NTR)
  • Aptamers: Against NGF: RBM-004
  • Decoy receptors: LEVI-04 (p75NTR-Fc)
PDGF
RET (GFL)
GFRα1
GFRα2
GFRα3
GFRα4
Unsorted
  • Kinase inhibitors: Agerafenib
SCF (c-Kit)
TGFβ
  • See here instead.
Trk
TrkA
  • Negative allosteric modulators: VM-902A
  • Aptamers: Against NGF: RBM-004
  • Decoy receptors: ReN-1820 (TrkAd5)
TrkB
TrkC
VEGF
Others
Stub icon

This drug article relating to the nervous system is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e