Limit comparison test

Method of testing for the convergence of an infinite series
Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}
  • Rolle's theorem
  • Mean value theorem
  • Inverse function theorem
Differential
Definitions
Concepts
  • Differentiation notation
  • Second derivative
  • Implicit differentiation
  • Logarithmic differentiation
  • Related rates
  • Taylor's theorem
Rules and identities
  • v
  • t
  • e

In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series.

Statement

Suppose that we have two series Σ n a n {\displaystyle \Sigma _{n}a_{n}} and Σ n b n {\displaystyle \Sigma _{n}b_{n}} with a n 0 , b n > 0 {\displaystyle a_{n}\geq 0,b_{n}>0} for all n {\displaystyle n} . Then if lim n a n b n = c {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} with 0 < c < {\displaystyle 0<c<\infty } , then either both series converge or both series diverge.[1]

Proof

Because lim n a n b n = c {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} we know that for every ε > 0 {\displaystyle \varepsilon >0} there is a positive integer n 0 {\displaystyle n_{0}} such that for all n n 0 {\displaystyle n\geq n_{0}} we have that | a n b n c | < ε {\displaystyle \left|{\frac {a_{n}}{b_{n}}}-c\right|<\varepsilon } , or equivalently

ε < a n b n c < ε {\displaystyle -\varepsilon <{\frac {a_{n}}{b_{n}}}-c<\varepsilon }
c ε < a n b n < c + ε {\displaystyle c-\varepsilon <{\frac {a_{n}}{b_{n}}}<c+\varepsilon }
( c ε ) b n < a n < ( c + ε ) b n {\displaystyle (c-\varepsilon )b_{n}<a_{n}<(c+\varepsilon )b_{n}}

As c > 0 {\displaystyle c>0} we can choose ε {\displaystyle \varepsilon } to be sufficiently small such that c ε {\displaystyle c-\varepsilon } is positive. So b n < 1 c ε a n {\displaystyle b_{n}<{\frac {1}{c-\varepsilon }}a_{n}} and by the direct comparison test, if n a n {\displaystyle \sum _{n}a_{n}} converges then so does n b n {\displaystyle \sum _{n}b_{n}} .

Similarly a n < ( c + ε ) b n {\displaystyle a_{n}<(c+\varepsilon )b_{n}} , so if n a n {\displaystyle \sum _{n}a_{n}} diverges, again by the direct comparison test, so does n b n {\displaystyle \sum _{n}b_{n}} .

That is, both series converge or both series diverge.

Example

We want to determine if the series n = 1 1 n 2 + 2 n {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}+2n}}} converges. For this we compare it with the convergent series n = 1 1 n 2 = π 2 6 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}

As lim n 1 n 2 + 2 n n 2 1 = 1 > 0 {\displaystyle \lim _{n\to \infty }{\frac {1}{n^{2}+2n}}{\frac {n^{2}}{1}}=1>0} we have that the original series also converges.

One-sided version

One can state a one-sided comparison test by using limit superior. Let a n , b n 0 {\displaystyle a_{n},b_{n}\geq 0} for all n {\displaystyle n} . Then if lim sup n a n b n = c {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} with 0 c < {\displaystyle 0\leq c<\infty } and Σ n b n {\displaystyle \Sigma _{n}b_{n}} converges, necessarily Σ n a n {\displaystyle \Sigma _{n}a_{n}} converges.

Example

Let a n = 1 ( 1 ) n n 2 {\displaystyle a_{n}={\frac {1-(-1)^{n}}{n^{2}}}} and b n = 1 n 2 {\displaystyle b_{n}={\frac {1}{n^{2}}}} for all natural numbers n {\displaystyle n} . Now lim n a n b n = lim n ( 1 ( 1 ) n ) {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\lim _{n\to \infty }(1-(-1)^{n})} does not exist, so we cannot apply the standard comparison test. However, lim sup n a n b n = lim sup n ( 1 ( 1 ) n ) = 2 [ 0 , ) {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\limsup _{n\to \infty }(1-(-1)^{n})=2\in [0,\infty )} and since n = 1 1 n 2 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}} converges, the one-sided comparison test implies that n = 1 1 ( 1 ) n n 2 {\displaystyle \sum _{n=1}^{\infty }{\frac {1-(-1)^{n}}{n^{2}}}} converges.

Converse of the one-sided comparison test

Let a n , b n 0 {\displaystyle a_{n},b_{n}\geq 0} for all n {\displaystyle n} . If Σ n a n {\displaystyle \Sigma _{n}a_{n}} diverges and Σ n b n {\displaystyle \Sigma _{n}b_{n}} converges, then necessarily lim sup n a n b n = {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\infty } , that is, lim inf n b n a n = 0 {\displaystyle \liminf _{n\to \infty }{\frac {b_{n}}{a_{n}}}=0} . The essential content here is that in some sense the numbers a n {\displaystyle a_{n}} are larger than the numbers b n {\displaystyle b_{n}} .

Example

Let f ( z ) = n = 0 a n z n {\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}} be analytic in the unit disc D = { z C : | z | < 1 } {\displaystyle D=\{z\in \mathbb {C} :|z|<1\}} and have image of finite area. By Parseval's formula the area of the image of f {\displaystyle f} is proportional to n = 1 n | a n | 2 {\displaystyle \sum _{n=1}^{\infty }n|a_{n}|^{2}} . Moreover, n = 1 1 / n {\displaystyle \sum _{n=1}^{\infty }1/n} diverges. Therefore, by the converse of the comparison test, we have lim inf n n | a n | 2 1 / n = lim inf n ( n | a n | ) 2 = 0 {\displaystyle \liminf _{n\to \infty }{\frac {n|a_{n}|^{2}}{1/n}}=\liminf _{n\to \infty }(n|a_{n}|)^{2}=0} , that is, lim inf n n | a n | = 0 {\displaystyle \liminf _{n\to \infty }n|a_{n}|=0} .

See also

References

  1. ^ Swokowski, Earl (1983), Calculus with analytic geometry (Alternate ed.), Prindle, Weber & Schmidt, p. 516, ISBN 0-87150-341-7

Further reading

  • Rinaldo B. Schinazi: From Calculus to Analysis. Springer, 2011, ISBN 9780817682897, pp. 50
  • Michele Longo and Vincenzo Valori: The Comparison Test: Not Just for Nonnegative Series. Mathematics Magazine, Vol. 79, No. 3 (Jun., 2006), pp. 205–210 (JSTOR)
  • J. Marshall Ash: The Limit Comparison Test Needs Positivity. Mathematics Magazine, Vol. 85, No. 5 (December 2012), pp. 374–375 (JSTOR)

External links

  • Pauls Online Notes on Comparison Test
  • v
  • t
  • e
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Miscellaneous topics