Product order

Hasse diagram of the product order on N {\displaystyle \mathbb {N} } × N {\displaystyle \mathbb {N} }

In mathematics, given a partial order {\displaystyle \preceq } and {\displaystyle \sqsubseteq } on a set A {\displaystyle A} and B {\displaystyle B} , respectively, the product order[1][2][3][4] (also called the coordinatewise order[5][3][6] or componentwise order[2][7]) is a partial ordering {\displaystyle \leq } on the Cartesian product A × B . {\displaystyle A\times B.} Given two pairs ( a 1 , b 1 ) {\displaystyle \left(a_{1},b_{1}\right)} and ( a 2 , b 2 ) {\displaystyle \left(a_{2},b_{2}\right)} in A × B , {\displaystyle A\times B,} declare that ( a 1 , b 1 ) ( a 2 , b 2 ) {\displaystyle \left(a_{1},b_{1}\right)\leq \left(a_{2},b_{2}\right)} if a 1 a 2 {\displaystyle a_{1}\preceq a_{2}} and b 1 b 2 . {\displaystyle b_{1}\sqsubseteq b_{2}.}

Another possible ordering on A × B {\displaystyle A\times B} is the lexicographical order. It is a total ordering if both A {\displaystyle A} and B {\displaystyle B} are totally ordered. However the product order of two total orders is not in general total; for example, the pairs ( 0 , 1 ) {\displaystyle (0,1)} and ( 1 , 0 ) {\displaystyle (1,0)} are incomparable in the product order of the ordering 0 < 1 {\displaystyle 0<1} with itself. The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order.[3]

The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions.[7]

The product order generalizes to arbitrary (possibly infinitary) Cartesian products. Suppose A {\displaystyle A\neq \varnothing } is a set and for every a A , {\displaystyle a\in A,} ( I a , ) {\displaystyle \left(I_{a},\leq \right)} is a preordered set. Then the product preorder on a A I a {\displaystyle \prod _{a\in A}I_{a}} is defined by declaring for any i = ( i a ) a A {\displaystyle i_{\bullet }=\left(i_{a}\right)_{a\in A}} and j = ( j a ) a A {\displaystyle j_{\bullet }=\left(j_{a}\right)_{a\in A}} in a A I a , {\displaystyle \prod _{a\in A}I_{a},} that

i j {\displaystyle i_{\bullet }\leq j_{\bullet }} if and only if i a j a {\displaystyle i_{a}\leq j_{a}} for every a A . {\displaystyle a\in A.}

If every ( I a , ) {\displaystyle \left(I_{a},\leq \right)} is a partial order then so is the product preorder.

Furthermore, given a set A , {\displaystyle A,} the product order over the Cartesian product a A { 0 , 1 } {\displaystyle \prod _{a\in A}\{0,1\}} can be identified with the inclusion ordering of subsets of A . {\displaystyle A.} [4]

The notion applies equally well to preorders. The product order is also the categorical product in a number of richer categories, including lattices and Boolean algebras.[7]

See also

References

  1. ^ Neggers, J.; Kim, Hee Sik (1998), "4.2 Product Order and Lexicographic Order", Basic Posets, World Scientific, pp. 64–78, ISBN 9789810235895
  2. ^ a b Sudhir R. Ghorpade; Balmohan V. Limaye (2010). A Course in Multivariable Calculus and Analysis. Springer. p. 5. ISBN 978-1-4419-1621-1.
  3. ^ a b c Egbert Harzheim (2006). Ordered Sets. Springer. pp. 86–88. ISBN 978-0-387-24222-4.
  4. ^ a b Victor W. Marek (2009). Introduction to Mathematics of Satisfiability. CRC Press. p. 17. ISBN 978-1-4398-0174-1.
  5. ^ Davey & Priestley, Introduction to Lattices and Order (Second Edition), 2002, p. 18
  6. ^ Alexander Shen; Nikolai Konstantinovich Vereshchagin (2002). Basic Set Theory. American Mathematical Soc. p. 43. ISBN 978-0-8218-2731-4.
  7. ^ a b c Paul Taylor (1999). Practical Foundations of Mathematics. Cambridge University Press. pp. 144–145 and 216. ISBN 978-0-521-63107-5.
  • v
  • t
  • e
Key conceptsResultsProperties & Types (list)ConstructionsTopology & OrdersRelated


Stub icon

This mathematics-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e