Highly cototient number

Numbers k where x - phi(x) = k has many solutions

In number theory, a branch of mathematics, a highly cototient number is a positive integer k {\displaystyle k} which is above 1 and has more solutions to the equation

x ϕ ( x ) = k {\displaystyle x-\phi (x)=k}

than any other integer below k {\displaystyle k} and above 1. Here, ϕ {\displaystyle \phi } is Euler's totient function. There are infinitely many solutions to the equation for

k {\displaystyle k} = 1

so this value is excluded in the definition. The first few highly cototient numbers are:[1]

2, 4, 8, 23, 35, 47, 59, 63, 83, 89, 113, 119, 167, 209, 269, 299, 329, 389, 419, 509, 629, 659, 779, 839, 1049, 1169, 1259, 1469, 1649, 1679, 1889, ... (sequence A100827 in the OEIS)

Many of the highly cototient numbers are odd.[1]

The concept is somewhat analogous to that of highly composite numbers. Just as there are infinitely many highly composite numbers, there are also infinitely many highly cototient numbers. Computations become harder, since integer factorization becomes harder as the numbers get larger.

Example

The cototient of x {\displaystyle x} is defined as x ϕ ( x ) {\displaystyle x-\phi (x)} , i.e. the number of positive integers less than or equal to x {\displaystyle x} that have at least one prime factor in common with x {\displaystyle x} . For example, the cototient of 6 is 4 since these four positive integers have a prime factor in common with 6: 2, 3, 4, 6. The cototient of 8 is also 4, this time with these integers: 2, 4, 6, 8. There are exactly two numbers, 6 and 8, which have cototient 4. There are fewer numbers which have cototient 2 and cototient 3 (one number in each case), so 4 is a highly cototient number.

(sequence A063740 in the OEIS)

k (highly cototient k are bolded) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of solutions to x – φ(x) = k 1 1 1 2 1 1 2 3 2 0 2 3 2 1 2 3 3 1 3 1 3 1 4 4 3 0 4 1 4 3
n ks such that k ϕ ( k ) = n {\displaystyle k-\phi (k)=n} number of ks such that k ϕ ( k ) = n {\displaystyle k-\phi (k)=n} (sequence A063740 in the OEIS)
0 1 1
1 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, ... (all primes)
2 4 1
3 9 1
4 6, 8 2
5 25 1
6 10 1
7 15, 49 2
8 12, 14, 16 3
9 21, 27 2
10 0
11 35, 121 2
12 18, 20, 22 3
13 33, 169 2
14 26 1
15 39, 55 2
16 24, 28, 32 3
17 65, 77, 289 3
18 34 1
19 51, 91, 361 3
20 38 1
21 45, 57, 85 3
22 30 1
23 95, 119, 143, 529 4
24 36, 40, 44, 46 4
25 69, 125, 133 3
26 0
27 63, 81, 115, 187 4
28 52 1
29 161, 209, 221, 841 4
30 42, 50, 58 3
31 87, 247, 961 3
32 48, 56, 62, 64 4
33 93, 145, 253 3
34 0
35 75, 155, 203, 299, 323 5
36 54, 68 2
37 217, 1369 2
38 74 1
39 99, 111, 319, 391 4
40 76 1
41 185, 341, 377, 437, 1681 5
42 82 1
43 123, 259, 403, 1849 4
44 60, 86 2
45 117, 129, 205, 493 4
46 66, 70 2
47 215, 287, 407, 527, 551, 2209 6
48 72, 80, 88, 92, 94 5
49 141, 301, 343, 481, 589 5
50 0

Primes

The first few highly cototient numbers which are primes are [2]

2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889, 2099, 2309, 2729, 3359, 3989, 4289, 4409, 5879, 6089, 6719, 9029, 9239, ... (sequence A105440 in the OEIS)

See also

  • Highly totient number

References

  1. ^ a b Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation..
  2. ^ Sloane, N. J. A. (ed.). "Sequence A105440 (Highly cototient numbers that are prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.


  • v
  • t
  • e
Totient function
  • v
  • t
  • e
Prime number classes
By formula
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Double Mersenne (22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Proth (k·2n + 1)
  • Factorial (n! ± 1)
  • Primorial (pn# ± 1)
  • Euclid (pn# + 1)
  • Pythagorean (4n + 1)
  • Pierpont (2m·3n + 1)
  • Quartan (x4 + y4)
  • Solinas (2m ± 2n ± 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Cuban (x3 − y3)/(x − y)
  • Leyland (xy + yx)
  • Thabit (3·2n − 1)
  • Williams ((b−1)·bn − 1)
  • Mills (A3n)
By integer sequence
By property
Base-dependent
Patterns
  • Twin (p, p + 2)
  • Bi-twin chain (n ± 1, 2n ± 1, 4n ± 1, …)
  • Triplet (p, p + 2 or p + 4, p + 6)
  • Quadruplet (p, p + 2, p + 6, p + 8)
  • k-tuple
  • Cousin (p, p + 4)
  • Sexy (p, p + 6)
  • Chen
  • Sophie Germain/Safe (p, 2p + 1)
  • Cunningham (p, 2p ± 1, 4p ± 3, 8p ± 7, ...)
  • Arithmetic progression (p + a·n, n = 0, 1, 2, 3, ...)
  • Balanced (consecutive p − n, p, p + n)
By size
Complex numbers
Composite numbers
Related topics
First 60 primes
  • 2
  • 3
  • 5
  • 7
  • 11
  • 13
  • 17
  • 19
  • 23
  • 29
  • 31
  • 37
  • 41
  • 43
  • 47
  • 53
  • 59
  • 61
  • 67
  • 71
  • 73
  • 79
  • 83
  • 89
  • 97
  • 101
  • 103
  • 107
  • 109
  • 113
  • 127
  • 131
  • 137
  • 139
  • 149
  • 151
  • 157
  • 163
  • 167
  • 173
  • 179
  • 181
  • 191
  • 193
  • 197
  • 199
  • 211
  • 223
  • 227
  • 229
  • 233
  • 239
  • 241
  • 251
  • 257
  • 263
  • 269
  • 271
  • 277
  • 281
  • v
  • t
  • e
Classes of natural numbers
Of the form a × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via a sieve
  • Mathematics portal