Lista de integrais de funções trigonométricas

A lista seguinte contém integrais de funções trigonométricas.

A constante "c" é assumida como não nula.

Integrais de funções trigonométricas contendo apenas seno

sen c x d x = 1 c cos c x {\displaystyle \int \operatorname {sen} cx\;dx=-{\frac {1}{c}}\cos cx}
sen n c x d x = sen n 1 c x cos c x n c + n 1 n sen n 2 c x d x (for  n > 0 ) {\displaystyle \int \operatorname {sen} ^{n}cx\;dx=-{\frac {\operatorname {sen} ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \operatorname {sen} ^{n-2}cx\;dx\qquad {\mbox{(for }}n>0{\mbox{)}}}
1 sen x d x = cvs x d x = 2 cos x 2 + sen x 2 cos x 2 sen x 2 cvs x {\displaystyle \int {\sqrt {1-\operatorname {sen} {x}}}\,dx=\int {\sqrt {\operatorname {cvs} {x}}}\,dx=2{\frac {\cos {\frac {x}{2}}+\operatorname {sen} {\frac {x}{2}}}{\cos {\frac {x}{2}}-\operatorname {sen} {\frac {x}{2}}}}{\sqrt {\operatorname {cvs} {x}}}}

onde cvs{x} é a função de Coversene

x sen c x d x = sen c x c 2 x cos c x c {\displaystyle \int x\operatorname {sen} cx\;dx={\frac {\operatorname {sen} cx}{c^{2}}}-{\frac {x\cos cx}{c}}}
x n sen c x d x = x n c cos c x + n c x n 1 cos c x d x (for  n > 0 ) {\displaystyle \int x^{n}\operatorname {sen} cx\;dx=-{\frac {x^{n}}{c}}\cos cx+{\frac {n}{c}}\int x^{n-1}\cos cx\;dx\qquad {\mbox{(for }}n>0{\mbox{)}}}
sen c x x d x = i = 0 ( 1 ) i ( c x ) 2 i + 1 ( 2 i + 1 ) ( 2 i + 1 ) ! {\displaystyle \int {\frac {\operatorname {sen} cx}{x}}dx=\sum _{i=0}^{\infty }(-1)^{i}{\frac {(cx)^{2i+1}}{(2i+1)\cdot (2i+1)!}}}
sen c x x n d x = sin c x ( n 1 ) x n 1 + c n 1 cos c x x n 1 d x {\displaystyle \int {\frac {\operatorname {sen} cx}{x^{n}}}dx=-{\frac {\sin cx}{(n-1)x^{n-1}}}+{\frac {c}{n-1}}\int {\frac {\cos cx}{x^{n-1}}}dx}
d x sen c x = 1 c ln | tan c x 2 | {\displaystyle \int {\frac {dx}{\operatorname {sen} cx}}={\frac {1}{c}}\ln \left|\tan {\frac {cx}{2}}\right|}
d x sen n c x = cos c x c ( 1 n ) sen n 1 c x + n 2 n 1 d x sen n 2 c x (for  n > 1 ) {\displaystyle \int {\frac {dx}{\operatorname {sen} ^{n}cx}}={\frac {\cos cx}{c(1-n)\operatorname {sen} ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\operatorname {sen} ^{n-2}cx}}\qquad {\mbox{(for }}n>1{\mbox{)}}}
d x 1 ± sen c x = 1 c tan ( c x 2 π 4 ) {\displaystyle \int {\frac {dx}{1\pm \operatorname {sen} cx}}={\frac {1}{c}}\tan \left({\frac {cx}{2}}\mp {\frac {\pi }{4}}\right)}
x d x 1 + sen c x = x c tan ( c x 2 π 4 ) + 2 c 2 ln | cos ( c x 2 π 4 ) | {\displaystyle \int {\frac {x\;dx}{1+\operatorname {sen} cx}}={\frac {x}{c}}\tan \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{c^{2}}}\ln \left|\cos \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)\right|}
x d x 1 sen c x = x c cot ( π 4 c x 2 ) + 2 c 2 ln | sen ( π 4 c x 2 ) | {\displaystyle \int {\frac {x\;dx}{1-\operatorname {sen} cx}}={\frac {x}{c}}\cot \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)+{\frac {2}{c^{2}}}\ln \left|\operatorname {sen} \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)\right|}
sen c x d x 1 ± sen c x = ± x + 1 c tan ( π 4 c x 2 ) {\displaystyle \int {\frac {\operatorname {sen} cx\;dx}{1\pm \operatorname {sen} cx}}=\pm x+{\frac {1}{c}}\tan \left({\frac {\pi }{4}}\mp {\frac {cx}{2}}\right)}
sen c 1 x sen c 2 x d x = sen ( c 1 c 2 ) x 2 ( c 1 c 2 ) sen ( c 1 + c 2 ) x 2 ( c 1 + c 2 ) (for  | c 1 | | c 2 | ) {\displaystyle \int \operatorname {sen} c_{1}x\operatorname {sen} c_{2}x\;dx={\frac {\operatorname {sen}(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{\frac {\operatorname {sen}(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(for }}|c_{1}|\neq |c_{2}|{\mbox{)}}}

Integrais de funções trigonométricas contendo apenas cosseno

cos c x d x = 1 c sen c x {\displaystyle \int \cos cx\;dx={\frac {1}{c}}\operatorname {sen} cx}


cos n c x d x = cos n 1 c x sen c x n c + n 1 n cos n 2 c x d x (para  n > 0 ) {\displaystyle \int \cos ^{n}cx\;dx={\frac {\cos ^{n-1}cx\operatorname {sen} cx}{nc}}+{\frac {n-1}{n}}\int \cos ^{n-2}cx\;dx\qquad {\mbox{(para }}n>0{\mbox{)}}}
x cos c x d x = cos c x c 2 + x sen c x c {\displaystyle \int x\cos cx\;dx={\frac {\cos cx}{c^{2}}}+{\frac {x\operatorname {sen} cx}{c}}}

CALC

x n cos c x d x = x n sin c x c n c x n 1 sin c x d x {\displaystyle \int x^{n}\cos cx\;dx={\frac {x^{n}\sin cx}{c}}-{\frac {n}{c}}\int x^{n-1}\sin cx\;dx}
cos c x x d x = ln | c x | + i = 1 ( 1 ) i ( c x ) 2 i 2 i ( 2 i ) ! {\displaystyle \int {\frac {\cos cx}{x}}dx=\ln |cx|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(cx)^{2i}}{2i\cdot (2i)!}}}
cos c x x n d x = cos c x ( n 1 ) x n 1 c n 1 sen c x x n 1 d x (for  n 1 ) {\displaystyle \int {\frac {\cos cx}{x^{n}}}dx=-{\frac {\cos cx}{(n-1)x^{n-1}}}-{\frac {c}{n-1}}\int {\frac {\operatorname {sen} cx}{x^{n-1}}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
d x cos c x = 1 c ln | tan ( c x 2 + π 4 ) | {\displaystyle \int {\frac {dx}{\cos cx}}={\frac {1}{c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
d x cos n c x = sen c x c ( n 1 ) c o s n 1 c x + n 2 n 1 d x cos n 2 c x (for  n > 1 ) {\displaystyle \int {\frac {dx}{\cos ^{n}cx}}={\frac {\operatorname {sen} cx}{c(n-1)cos^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(for }}n>1{\mbox{)}}}
d x 1 + cos c x = 1 c tan c x 2 {\displaystyle \int {\frac {dx}{1+\cos cx}}={\frac {1}{c}}\tan {\frac {cx}{2}}}
d x 1 cos c x = 1 c cot c x 2 {\displaystyle \int {\frac {dx}{1-\cos cx}}=-{\frac {1}{c}}\cot {\frac {cx}{2}}}
x d x 1 + cos c x = x c tan c x 2 + 2 c 2 ln | cos c x 2 | {\displaystyle \int {\frac {x\;dx}{1+\cos cx}}={\frac {x}{c}}\tan {cx}{2}+{\frac {2}{c^{2}}}\ln \left|\cos {\frac {cx}{2}}\right|}
x d x 1 cos c x = x x cot c x 2 + 2 c 2 ln | sin c x 2 | {\displaystyle \int {\frac {x\;dx}{1-\cos cx}}=-{\frac {x}{x}}\cot {cx}{2}+{\frac {2}{c^{2}}}\ln \left|\sin {\frac {cx}{2}}\right|}
cos c x d x 1 + cos c x = x 1 c tan c x 2 {\displaystyle \int {\frac {\cos cx\;dx}{1+\cos cx}}=x-{\frac {1}{c}}\tan {\frac {cx}{2}}}
cos c x d x 1 cos c x = x 1 c cot c x 2 {\displaystyle \int {\frac {\cos cx\;dx}{1-\cos cx}}=-x-{\frac {1}{c}}\cot {\frac {cx}{2}}}
cos c 1 x cos c 2 x d x = sin ( c 1 c 2 ) x 2 ( c 1 c 2 ) + sin ( c 1 + c 2 ) x 2 ( c 1 + c 2 ) (Para  | c 1 | | c 2 | ) {\displaystyle \int \cos c_{1}x\cos c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(Para }}|c_{1}|\neq |c_{2}|{\mbox{)}}}

Integrais de funções trigonométricas contendo apenas tangente

tan c x d x = 1 c ln | cos c x | {\displaystyle \int \tan cx\;dx=-{\frac {1}{c}}\ln |\cos cx|}
tan n c x d x = 1 c ( n 1 ) tan n 1 c x tan n 2 c x d x (for  n 1 ) {\displaystyle \int \tan ^{n}cx\;dx={\frac {1}{c(n-1)}}\tan ^{n-1}cx-\int \tan ^{n-2}cx\;dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
d x tan c x + 1 = x 2 + 1 2 c ln | sin c x + cos c x | {\displaystyle \int {\frac {dx}{\tan cx+1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx+\cos cx|}
d x tan c x 1 = x 2 + 1 2 c ln | sin c x cos c x | {\displaystyle \int {\frac {dx}{\tan cx-1}}=-{\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|}
tan c x d x tan c x + 1 = x 2 1 2 c ln | sin c x + cos c x | {\displaystyle \int {\frac {\tan cx\;dx}{\tan cx+1}}={\frac {x}{2}}-{\frac {1}{2c}}\ln |\sin cx+\cos cx|}
tan c x d x tan c x 1 = x 2 + 1 2 c ln | sin c x cos c x | {\displaystyle \int {\frac {\tan cx\;dx}{\tan cx-1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|}

Integrais de funções trigonométricas contendo apenas secante

sec c x d x = 1 c ln | sec c x + tan c x | {\displaystyle \int \sec {cx}\,dx={\frac {1}{c}}\ln {\left|\sec {cx}+\tan {cx}\right|}}
sec n c x d x = sec n 1 c x sin c x c ( n 1 ) + n 2 n 1 sec n 2 c x d x  (for  n 1 ) {\displaystyle \int \sec ^{n}{cx}\,dx={\frac {\sec ^{n-1}{cx}\sin {cx}}{c(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{cx}\,dx\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}}
d x sec x + 1 = x tan x 2 {\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}}

Integrais de funções trigonométricas contendo apenas cossencante

csc c x d x = 1 c ln | csc c x cot c x | {\displaystyle \int \csc {cx}\,dx=-{\frac {1}{c}}\ln {\left|\csc {cx}-\cot {cx}\right|}}
csc n c x d x = csc n 1 c x cos c x c ( n 1 ) + n 2 n 1 csc n 2 c x d x  (for  n 1 ) {\displaystyle \int \csc ^{n}{cx}\,dx=-{\frac {\csc ^{n-1}{cx}\cos {cx}}{c(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{cx}\,dx\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}}

Integrais de funções trigonométricas contendo apenas cotangente

cot c x d x = 1 c ln | sin c x | {\displaystyle \int \cot cx\;dx={\frac {1}{c}}\ln |\sin cx|}
cot n c x d x = 1 c ( n 1 ) cot n 1 c x cot n 2 c x d x (for  n 1 ) {\displaystyle \int \cot ^{n}cx\;dx=-{\frac {1}{c(n-1)}}\cot ^{n-1}cx-\int \cot ^{n-2}cx\;dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
d x 1 + cot c x = tan c x d x tan c x + 1 {\displaystyle \int {\frac {dx}{1+\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx+1}}}
d x 1 cot c x = tan c x d x tan c x 1 {\displaystyle \int {\frac {dx}{1-\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx-1}}}

Integrais de funções trigonométricas contendo seno e cosseno

d x cos c x ± sin c x = 1 c 2 ln | tan ( c x 2 ± π 8 ) | {\displaystyle \int {\frac {dx}{\cos cx\pm \sin cx}}={\frac {1}{c{\sqrt {2}}}}\ln \left|\tan \left({\frac {cx}{2}}\pm {\frac {\pi }{8}}\right)\right|}
d x ( cos c x ± sin c x ) 2 = 1 2 c tan ( c x π 4 ) {\displaystyle \int {\frac {dx}{(\cos cx\pm \sin cx)^{2}}}={\frac {1}{2c}}\tan \left(cx\mp {\frac {\pi }{4}}\right)}
d x ( cos x + sen x ) n = 1 n 1 ( sen x cos x ( cos x + sen x ) n 1 2 ( n 2 ) d x ( cos x + sen x ) n 2 ) {\displaystyle \int {\frac {dx}{(\cos x+\operatorname {sen} x)^{n}}}={\frac {1}{n-1}}\left({\frac {\operatorname {sen} x-\cos x}{(\cos x+\operatorname {sen} x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\operatorname {sen} x)^{n-2}}}\right)}
cos c x d x cos c x + sen c x = x 2 + 1 2 c ln | sen c x + cos c x | {\displaystyle \int {\frac {\cos cx\;dx}{\cos cx+\operatorname {sen} cx}}={\frac {x}{2}}+{\frac {1}{2c}}\ln \left|\operatorname {sen} cx+\cos cx\right|}
cos c x d x cos c x sen c x = x 2 1 2 c ln | sen c x cos c x | {\displaystyle \int {\frac {\cos cx\;dx}{\cos cx-\operatorname {sen} cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\operatorname {sen} cx-\cos cx\right|}
sen c x d x cos c x + sen c x = x 2 1 2 c ln | sen c x + cos c x | {\displaystyle \int {\frac {\operatorname {sen} cx\;dx}{\cos cx+\operatorname {sen} cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\operatorname {sen} cx+\cos cx\right|}
sen c x d x cos c x sen c x = x 2 1 2 c ln | sen c x cos c x | {\displaystyle \int {\frac {\operatorname {sen} cx\;dx}{\cos cx-\operatorname {sen} cx}}=-{\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\operatorname {sen} cx-\cos cx\right|}
cos c x d x sen c x ( 1 + cos c x ) = 1 4 c tan 2 c x 2 + 1 2 c ln | tan c x 2 | {\displaystyle \int {\frac {\cos cx\;dx}{\operatorname {sen} cx(1+\cos cx)}}=-{\frac {1}{4c}}\tan ^{2}{\frac {cx}{2}}+{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}
cos c x d x sen c x ( 1 + cos c x ) = 1 4 c cot 2 c x 2 1 2 c ln | tan c x 2 | {\displaystyle \int {\frac {\cos cx\;dx}{\operatorname {sen} cx(1+-\cos cx)}}=-{\frac {1}{4c}}\cot ^{2}{\frac {cx}{2}}-{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}
sin c x d x cos c x ( 1 + sin c x ) = 1 4 c cot 2 ( c x 2 + π 4 ) + 1 2 c ln | tan ( c x 2 + π 4 ) | {\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1+\sin cx)}}={\frac {1}{4c}}\cot ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
sin c x d x cos c x ( 1 sin c x ) = 1 4 c tan 2 ( c x 2 + π 4 ) 1 2 c ln | tan ( c x 2 + π 4 ) | {\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1-\sin cx)}}={\frac {1}{4c}}\tan ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
sin c x cos c x d x = 1 2 c sin 2 c x {\displaystyle \int \sin cx\cos cx\;dx={\frac {1}{2c}}\sin ^{2}cx}
sin c 1 x cos c 2 x d x = cos ( c 1 + c 2 ) x 2 ( c 1 + c 2 ) cos ( c 1 c 2 ) x 2 ( c 1 c 2 ) (for  | c 1 | | c 2 | ) {\displaystyle \int \sin c_{1}x\cos c_{2}x\;dx=-{\frac {\cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{\frac {\cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}\qquad {\mbox{(for }}|c_{1}|\neq |c_{2}|{\mbox{)}}}
sin n c x cos c x d x = 1 c ( n + 1 ) sin n + 1 c x (for  n 1 ) {\displaystyle \int \sin ^{n}cx\cos cx\;dx={\frac {1}{c(n+1)}}\sin ^{n+1}cx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
sin c x cos n c x d x = 1 c ( n + 1 ) cos n + 1 c x (for  n 1 ) {\displaystyle \int \sin cx\cos ^{n}cx\;dx=-{\frac {1}{c(n+1)}}\cos ^{n+1}cx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
sin n c x cos m c x d x = sin n 1 c x cos m + 1 c x c ( n + m ) + n 1 n + m sin n 2 c x cos m c x d x (for  m , n > 0 ) {\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx=-{\frac {\sin ^{n-1}cx\cos ^{m+1}cx}{c(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}cx\cos ^{m}cx\;dx\qquad {\mbox{(for }}m,n>0{\mbox{)}}}
também: sin n c x cos m c x d x = sin n + 1 c x cos m 1 c x c ( n + m ) + m 1 n + m sin n c x cos m 2 c x d x (for  m , n > 0 ) {\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx={\frac {\sin ^{n+1}cx\cos ^{m-1}cx}{c(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}cx\cos ^{m-2}cx\;dx\qquad {\mbox{(for }}m,n>0{\mbox{)}}}
d x sin c x cos c x = 1 c ln | tan c x | {\displaystyle \int {\frac {dx}{\sin cx\cos cx}}={\frac {1}{c}}\ln \left|\tan cx\right|}
d x sin c x cos n c x = 1 c ( n 1 ) cos n 1 c x + d x sin c x cos n 2 c x (for  n 1 ) {\displaystyle \int {\frac {dx}{\sin cx\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}+\int {\frac {dx}{\sin cx\cos ^{n-2}cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
d x sin n c x cos c x = 1 c ( n 1 ) sin n 1 c x + d x sin n 2 c x cos c x (for  n 1 ) {\displaystyle \int {\frac {dx}{\sin ^{n}cx\cos cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}+\int {\frac {dx}{\sin ^{n-2}cx\cos cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
sin c x d x cos n c x = 1 c ( n 1 ) cos n 1 c x (for  n 1 ) {\displaystyle \int {\frac {\sin cx\;dx}{\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
sin 2 c x d x cos c x = 1 c sin c x + 1 c ln | tan ( π 4 + c x 2 ) | {\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos cx}}=-{\frac {1}{c}}\sin cx+{\frac {1}{c}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {cx}{2}}\right)\right|}
sin 2 c x d x cos n c x = sin c x c ( n 1 ) cos n 1 c x 1 n 1 d x cos n 2 c x (for  n 1 ) {\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)\cos ^{n-1}cx}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
sin n c x d x cos c x = sin n 1 c x c ( n 1 ) + sin n 2 c x d x cos c x (for  n 1 ) {\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos cx}}=-{\frac {\sin ^{n-1}cx}{c(n-1)}}+\int {\frac {\sin ^{n-2}cx\;dx}{\cos cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
sin n c x d x cos m c x = sin n + 1 c x c ( m 1 ) cos m 1 c x n m + 2 m 1 sin n c x d x cos m 2 c x (for  m 1 ) {\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n+1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}
também: sin n c x d x cos m c x = sin n 1 c x c ( n m ) cos m 1 c x + n 1 n m sin n 2 c x d x cos m c x (for  m n ) {\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}=-{\frac {\sin ^{n-1}cx}{c(n-m)\cos ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}cx\;dx}{\cos ^{m}cx}}\qquad {\mbox{(for }}m\neq n{\mbox{)}}}
também: sin n c x d x cos m c x = sin n 1 c x c ( m 1 ) cos m 1 c x n 1 n 1 sin n 1 c x d x cos m 2 c x (for  m 1 ) {\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n-1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-1}{n-1}}\int {\frac {\sin ^{n-1}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}
cos c x d x sin n c x = 1 c ( n 1 ) sin n 1 c x (for  n 1 ) {\displaystyle \int {\frac {\cos cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
cos 2 c x d x sin c x = 1 c ( cos c x + ln | tan c x 2 | ) {\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin cx}}={\frac {1}{c}}\left(\cos cx+\ln \left|\tan {\frac {cx}{2}}\right|\right)}
cos 2 c x d x sin n c x = 1 n 1 ( cos c x c sin n 1 c x ) + d x sin n 2 c x ) (for  n 1 ) {\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{n-1}}\left({\frac {\cos cx}{c\sin ^{n-1}cx)}}+\int {\frac {dx}{\sin ^{n-2}cx}}\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
cos n c x d x sin m c x = cos n + 1 c x c ( m 1 ) sin m 1 c x n m 2 m 1 c o s n c x d x sin m 2 c x (for  m 1 ) {\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n+1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-m-2}{m-1}}\int {\frac {cos^{n}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}
também: cos n c x d x sin m c x = cos n 1 c x c ( n m ) sin m 1 c x + n 1 n m c o s n 2 c x d x sin m c x (for  m n ) {\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}={\frac {\cos ^{n-1}cx}{c(n-m)\sin ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m}cx}}\qquad {\mbox{(for }}m\neq n{\mbox{)}}}
também: cos n c x d x sin m c x = cos n 1 c x c ( m 1 ) sin m 1 c x n 1 m 1 c o s n 2 c x d x sin m 2 c x (for  m 1 ) {\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n-1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-1}{m-1}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}

Integrais de funções trigonométricas contendo seno e tangente

sen c x tan c x d x = 1 c ( ln | sec c x + tan c x | sin c x ) {\displaystyle \int \operatorname {sen} cx\tan cx\;dx={\frac {1}{c}}(\ln |\sec cx+\tan cx|-\sin cx)}
tan n c x d x sin 2 c x = 1 c ( n 1 ) tan n 1 ( c x ) (for  n 1 ) {\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\sin ^{2}cx}}={\frac {1}{c(n-1)}}\tan ^{n-1}(cx)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}

Integrais de funções trigonométricas contendo cosseno e tangente

tan n c x d x cos 2 c x = 1 c ( n + 1 ) tan n + 1 c x (for  n 1 ) {\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(n+1)}}\tan ^{n+1}cx\qquad {\mbox{(for }}n\neq -1{\mbox{)}}}

Integrais de funções trigonométricas contendo seno e cotangente

cot n c x d x sin 2 c x = 1 c ( n + 1 ) cot n + 1 c x (for  n 1 ) {\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\sin ^{2}cx}}={\frac {1}{c(n+1)}}\cot ^{n+1}cx\qquad {\mbox{(for }}n\neq -1{\mbox{)}}}

Integrais de funções trigonométricas contendo cosseno e cotangente

cot n c x d x cos 2 c x = 1 c ( 1 n ) tan 1 n c x (for  n 1 ) {\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(1-n)}}\tan ^{1-n}cx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}

Integrais de funções trigonométricas contendo tangente e cotangente

tan m ( c x ) cot n ( c x ) d x = 1 c ( m + n 1 ) tan m + n 1 ( c x ) tan m 2 ( c x ) cot n ( c x ) d x (for  m + n 1 ) {\displaystyle \int {\frac {\tan ^{m}(cx)}{\cot ^{n}(cx)}}\;dx={\frac {1}{c(m+n-1)}}\tan ^{m+n-1}(cx)-\int {\frac {\tan ^{m-2}(cx)}{\cot ^{n}(cx)}}\;dx\qquad {\mbox{(for }}m+n\neq 1{\mbox{)}}}