Lijst van integralen

Integreren is een basisbewerking uit de analyse. Aangezien integreren niet, zoals bij differentiëren, door eenvoudige regels plaatsvindt, zijn tabellen met veel voorkomende integralen een handig hulpmiddel. In de onderstaande lijst van integralen wordt van een groot aantal verschillende functies de primitieve functie gegeven.

Er zijn lijsten van integralen:

Er wordt van alle genoemde integralen de primitieve functie gegeven. De primitieve functie van een functie is tot op de integratieconstante na bepaald. De integratieconstante C {\displaystyle C} bij de genoemde integralen kan alleen met bijkomende informatie, beginvoorwaarde of randvoorwaarde worden bepaald. Bij de hier gegeven integralen worden de onder- en de bovengrens van het interval, waarover wordt geïntegreerd, niet gegeven. Oneigenlijke integralen worden apart behandeld.

Rekenregels bij het integreren

  • Lineariteit van een integraal:
c f ( x )   d x = c f ( x )   d x {\displaystyle \int cf(x)\ {\rm {d}}x=c\int f(x)\ {\rm {dx}}}
( f ( x ) + g ( x ) )   d x = f ( x )   d x + g ( x )   d x {\displaystyle \int (f(x)+g(x))\ {\rm {d}}x=\int f(x)\ {\rm {d}}x+\int g(x)\ {\rm {d}}x}
f ( x ) g ( x )   d x = f ( x ) g ( x ) f ( x ) g ( x )   d x {\displaystyle \int f(x)g'(x)\ {\rm {d}}x=f(x)g(x)-\int f'(x)g(x)\ {\rm {d}}x}
  • Bepaalde integraal
a b d F ( x ) d x   d x = [ F ( x ) ] a b = F ( b ) F ( a ) {\displaystyle \int _{a}^{b}{\frac {{\rm {d}}F(x)}{{\rm {d}}x}}\ {\rm {d}}x=[F(x)]_{a}^{b}=F(b)-F(a)}
  • Meervoudige integraal als herhaalde integraal
f ( x , y )   d x d y = ( f ( x , y )   d x ) d y {\displaystyle \iint f(x,y)\ {\rm {d}}x{\rm {d}}y=\int \left(\int f(x,y)\ {\rm {d}}x\right){\rm {d}}y}
  • Integratie door substitutie
f ( g ( t ) )   g ( t )   d t = f ( x )   d x {\displaystyle \int f(g(t))\ g'(t)\ {\rm {d}}t=\int f(x)\ {\rm {d}}x}

Integralen van standaardfuncties

Rationale functies

1   d x = x + C {\displaystyle \int 1\ {\rm {d}}x=x+C}
x n   d x = x n + 1 n + 1 + C  als  n 1 {\displaystyle \int x^{n}\ {\rm {d}}x={\frac {x^{n+1}}{n+1}}+C\qquad {\mbox{ als }}n\neq -1}
1 x   d x = ln | x | + C {\displaystyle \int {\frac {1}{x}}\ {\rm {d}}x=\ln {\left|x\right|}+C}
1 a 2 + x 2   d x = 1 a arctan x a + C {\displaystyle \int {\frac {1}{a^{2}+x^{2}}}\ {\rm {d}}x={\frac {1}{a}}\arctan {\frac {x}{a}}+C}
1 x ( a + b x )   d x = 1 a ln | x a + b x | + C {\displaystyle \int {\frac {1}{x\left(a+bx\right)}}\ {\rm {d}}x={\frac {1}{a}}\ln \left|{\frac {x}{a+bx}}\right|+C}
1 a x 2 + b x + c   d x = { 1 b 2 4 a c ln | 2 a x + b b 2 4 a c 2 a x + b + b 2 4 a c | + C als   b 2 > 4 a c 2 4 a c b 2 arctan 2 a x + b 4 a c b 2 + C als   b 2 < 4 a c {\displaystyle \int {\frac {1}{ax^{2}+bx+c}}\ {\rm {d}}x=\left\{{\begin{matrix}{\cfrac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\cfrac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|+C&{\mbox{als}}\ b^{2}>4ac\\{\cfrac {2}{\sqrt {4ac-b^{2}}}}\arctan {\cfrac {2ax+b}{\sqrt {4ac-b^{2}}}}+C&{\mbox{als}}\ b^{2}<4ac\end{matrix}}\right.}
x a x 2 + b x + c   d x = 1 2 a ln | a x 2 + b x + c | b 2 a 1 a x 2 + b x + c   d x {\displaystyle \int {\frac {x}{ax^{2}+bx+c}}\ {\rm {d}}x={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {1}{ax^{2}+bx+c}}\ {\rm {d}}x}

Irrationale functies

d u a 2 u 2 = arcsin u a + C {\displaystyle \int {{\rm {d}}u \over {\sqrt {a^{2}-u^{2}}}}=\arcsin {u \over a}+C}
d u a 2 u 2 = arccos u a + C {\displaystyle \int {-{\rm {d}}u \over {\sqrt {a^{2}-u^{2}}}}=\arccos {u \over a}+C}
d u u u 2 a 2 = 1 a arcsec   | u | a + C {\displaystyle \int {{\rm {d}}u \over u{\sqrt {u^{2}-a^{2}}}}={1 \over a}{\mbox{arcsec}}\ {|u| \over a}+C}
a 2 x 2   d x = x 2 a 2 x 2 + a 2 2 arcsin x a + C , a > 0 {\displaystyle \int {\sqrt {a^{2}-x^{2}}}\ {\rm {d}}x={\frac {x}{2}}{\sqrt {a^{2}-x^{2}}}+{\frac {a^{2}}{2}}\arcsin {\frac {x}{a}}+C,\quad a>0}
( a 2 x 2 ) 3 2   d x = x 8 ( 5 a 2 2 x 2 ) a 2 x 2 + 3 a 4 8 arcsin x a + C , a > 0 {\displaystyle \int \left(a^{2}-x^{2}\right)^{\frac {3}{2}}\ {\rm {d}}x={\frac {x}{8}}\left(5a^{2}-2x^{2}\right){\sqrt {a^{2}-x^{2}}}+{\frac {3a^{4}}{8}}\arcsin {\frac {x}{a}}+C,\quad a>0}
1 ( a 2 x 2 ) 3 2   d x = x a 2 a 2 x 2 + C {\displaystyle \int {\frac {1}{\left(a^{2}-x^{2}\right)^{\frac {3}{2}}}}\ {\rm {d}}x={\frac {x}{a^{2}{\sqrt {a^{2}-x^{2}}}}}+C}
x a + b x   d x = 2 ( 3 b x 2 a ) ( a + b x ) 3 2 15 b 2 + C {\displaystyle \int x{\sqrt {a+bx}}\ {\rm {d}}x={\frac {2\left(3bx-2a\right)\left(a+bx\right)^{\frac {3}{2}}}{15b^{2}}}+C}
a + b x x   d x = 2 a + b x + a 1 x a + b x   d x {\displaystyle \int {\frac {\sqrt {a+bx}}{x}}\ {\rm {d}}x=2{\sqrt {a+bx}}+a\int {\frac {1}{x{\sqrt {a+bx}}}}\ {\rm {d}}x}
x a + b x   d x = 2 ( b x 2 a ) a + b x 3 b 2 + C {\displaystyle \int {\frac {x}{\sqrt {a+bx}}}\ {\rm {d}}x={\frac {2\left(bx-2a\right){\sqrt {a+bx}}}{3b^{2}}}+C}
1 x a + b x   d x = 1 a ln | a + b x a a + b x + a | + C , a > 0 {\displaystyle \int {\frac {1}{x{\sqrt {a+bx}}}}\ {\rm {d}}x={\frac {1}{\sqrt {a}}}\ln \left|{\frac {{\sqrt {a+bx}}-{\sqrt {a}}}{{\sqrt {a+bx}}+{\sqrt {a}}}}\right|+C,\quad a>0}
1 x a + b x   d x = 2 a arctan | a + b x a | + C , a < 0 {\displaystyle \int {\frac {1}{x{\sqrt {a+bx}}}}\ {\rm {d}}x={\frac {2}{\sqrt {-a}}}\arctan \left|{\sqrt {\frac {a+bx}{-a}}}\right|+C,\quad a<0}
a 2 x 2 x   d x = a 2 x 2 a ln | a + a 2 + x 2 x | + C {\displaystyle \int {\frac {\sqrt {a^{2}-x^{2}}}{x}}\ {\rm {d}}x={\sqrt {a^{2}-x^{2}}}-a\ln \left|{\frac {a+{\sqrt {a^{2}+x^{2}}}}{x}}\right|+C}
x a 2 x 2   d x = 1 3 ( a 2 x 2 ) 3 2 + C {\displaystyle \int x{\sqrt {a^{2}-x^{2}}}\ {\rm {d}}x=-{\frac {1}{3}}\left(a^{2}-x^{2}\right)^{\frac {3}{2}}+C}
x 2 a 2 x 2   d x = x 8 ( 2 x 2 a 2 ) a 2 x 2 + a 4 8 arcsin x a + C , a > 0 {\displaystyle \int x^{2}{\sqrt {a^{2}-x^{2}}}\ {\rm {d}}x={\frac {x}{8}}\left(2x^{2}-a^{2}\right){\sqrt {a^{2}-x^{2}}}+{\frac {a^{4}}{8}}\arcsin {\frac {x}{a}}+C,\quad a>0}
1 x a 2 x 2   d x = 1 a ln | a + a 2 x 2 x | + C {\displaystyle \int {\frac {1}{x{\sqrt {a^{2}-x^{2}}}}}\ {\rm {d}}x=-{\frac {1}{a}}\ln \left|{\frac {a+{\sqrt {a^{2}-x^{2}}}}{x}}\right|+C}
x a 2 x 2   d x = a 2 x 2 + C {\displaystyle \int {\frac {x}{\sqrt {a^{2}-x^{2}}}}\ {\rm {d}}x=-{\sqrt {a^{2}-x^{2}}}+C}
x 2 a 2 x 2   d x = x 2 a 2 x 2 + a 2 2 arcsin x a + C , a > 0 {\displaystyle \int {\frac {x^{2}}{\sqrt {a^{2}-x^{2}}}}\ {\rm {d}}x=-{\frac {x}{2}}{\sqrt {a^{2}-x^{2}}}+{\frac {a^{2}}{2}}\arcsin {\frac {x}{a}}+C,\quad a>0}
x 2 + a 2 x   d x = x 2 + a 2 a ln | a + x 2 + a 2 x | + C {\displaystyle \int {\frac {\sqrt {x^{2}+a^{2}}}{x}}\ {\rm {d}}x={\sqrt {x^{2}+a^{2}}}-a\ln \left|{\frac {a+{\sqrt {x^{2}+a^{2}}}}{x}}\right|+C}
x 2 a 2 x   d x = x 2 a 2 a arccos a | x | + C , a > 0 {\displaystyle \int {\frac {\sqrt {x^{2}-a^{2}}}{x}}\ {\rm {d}}x={\sqrt {x^{2}-a^{2}}}-a\arccos {\frac {a}{|x|}}+C,\quad a>0}
x 2 x 2 + a 2   d x = x x 2 + a 2 2 a 2 2 ln ( x + x 2 + a 2 ) + C {\displaystyle \int {\frac {x^{2}}{\sqrt {x^{2}+a^{2}}}}\ {\rm {d}}x={\frac {x{\sqrt {x^{2}+a^{2}}}}{2}}-{\frac {a^{2}}{2}}\ln \left(x+{\sqrt {x^{2}+a^{2}}}\right)+C}
1 x x 2 + a 2   d x = 1 a ln | x a + x 2 + a 2 | + C {\displaystyle \int {\frac {1}{x{\sqrt {x^{2}+a^{2}}}}}\ {\rm {d}}x={\frac {1}{a}}\ln \left|{\frac {x}{a+{\sqrt {x^{2}+a^{2}}}}}\right|+C}
1 x 2 x 2 ± a 2   d x = x 2 ± a 2 a 2 x + C {\displaystyle \int {\frac {1}{x^{2}{\sqrt {x^{2}\pm a^{2}}}}}\ {\rm {d}}x=\mp {\frac {\sqrt {x^{2}\pm a^{2}}}{a^{2}x}}+C}
1 x 2 ± a 2   d x = ln | x + x 2 ± a 2 a | + C = arcsinh x a + C {\displaystyle \int {\frac {1}{\sqrt {x^{2}\pm a^{2}}}}\ {\rm {d}}x=\ln \left|{\frac {x+{\sqrt {x^{2}\pm a^{2}}}}{a}}\right|+C=\operatorname {arcsinh} {\frac {x}{a}}+C}
1 a x 2 + b x + c   d x = 1 a ln | 2 a x + b + 2 a a x 2 + b x + c | + C , a > 0 {\displaystyle \int {\frac {1}{\sqrt {ax^{2}+bx+c}}}\ {\rm {d}}x={\frac {1}{\sqrt {a}}}\ln \left|2ax+b+2{\sqrt {a}}{\sqrt {ax^{2}+bx+c}}\right|+C,\quad a>0}
1 a x 2 + b x + c   d x = 1 a arcsin 2 a x b b 2 4 a c + C , a < 0 {\displaystyle \int {\frac {1}{\sqrt {ax^{2}+bx+c}}}\ {\rm {d}}x={\frac {1}{\sqrt {-a}}}\arcsin {\frac {-2ax-b}{\sqrt {b^{2}-4ac}}}+C,\quad a<0}
a x 2 + b x + c   d x = 2 a x + b 4 a a x 2 + b x + c + 4 a c b 2 8 a 1 a x 2 + b x + c   d x {\displaystyle \int {\sqrt {ax^{2}+bx+c}}\ {\rm {d}}x={\frac {2ax+b}{4a}}{\sqrt {ax^{2}+bx+c}}+{\frac {4ac-b^{2}}{8a}}\int {\frac {1}{\sqrt {ax^{2}+bx+c}}}\ {\rm {d}}x}
x a x 2 + b x + c   d x = a x 2 + b x + c a b 2 a 1 a x 2 + b x + c   d x {\displaystyle \int {\frac {x}{\sqrt {ax^{2}+bx+c}}}\ {\rm {d}}x={\frac {\sqrt {ax^{2}+bx+c}}{a}}-{\frac {b}{2a}}\int {\frac {1}{\sqrt {ax^{2}+bx+c}}}\ {\rm {d}}x}
1 x a x 2 + b x + c   d x = 1 c ln | 2 c a x 2 + b x + c + b x + 2 c x | + C , c > 0 {\displaystyle \int {\frac {1}{x{\sqrt {ax^{2}+bx+c}}}}\ {\rm {d}}x={\frac {-1}{\sqrt {c}}}\ln \left|{\frac {2{\sqrt {c}}{\sqrt {ax^{2}+bx+c}}+bx+2c}{x}}\right|+C,\quad c>0}
1 x a x 2 + b x + c   d x = 1 c arcsin b x + 2 c | x | b 2 4 a c + C , c < 0 {\displaystyle \int {\frac {1}{x{\sqrt {ax^{2}+bx+c}}}}\ {\rm {d}}x={\frac {1}{\sqrt {-c}}}\arcsin {\frac {bx+2c}{|x|{\sqrt {b^{2}-4ac}}}}+C,\quad c<0}
x 3 x 2 + a 2   d x = ( 1 5 x 2 2 15 a 2 ) ( x 2 + a 2 ) 3 + C {\displaystyle \int x^{3}{\sqrt {x^{2}+a^{2}}}\ {\rm {d}}x=\left({\frac {1}{5}}x^{2}-{\frac {2}{15}}a^{2}\right){\sqrt {\left(x^{2}+a^{2}\right)^{3}}}+C}
x 2 ± a 2 x 4   d x = ( x 2 + a 2 ) 3 3 a 2 x 3 + C {\displaystyle \int {\frac {\sqrt {x^{2}\pm a^{2}}}{x^{4}}}\ {\rm {d}}x={\frac {\mp {\sqrt {\left(x^{2}+a^{2}\right)^{3}}}}{3a^{2}x^{3}}}+C}

Exponentiële functies

e x   d x = e x + C {\displaystyle \int e^{x}\ {\rm {d}}x=e^{x}+C}
a x   d x = a x ln a + C {\displaystyle \int a^{x}\ {\rm {d}}x={\frac {a^{x}}{\ln {a}}}+C}
e a x   d x = e a x a + C {\displaystyle \int e^{ax}\ {\rm {d}}x={\frac {e^{ax}}{a}}+C}
a b x   d x = a b x b ln a + C {\displaystyle \int a^{bx}\ {\rm {d}}x={\frac {a^{bx}}{b\ln {a}}}+C}
x n e a x   d x = x n e a x a n a x n 1 e a x   d x {\displaystyle \int x^{n}e^{ax}\ {\rm {d}}x={\frac {x^{n}e^{ax}}{a}}-{\frac {n}{a}}\int x^{n-1}e^{ax}\ {\rm {d}}x}

Logaritmes

ln x   d x = x ln x x + C {\displaystyle \int \ln {x}\ {\rm {d}}x=x\ln {x}-x+C}
log b x   d x = x log b x x log b e + C {\displaystyle \int \log _{b}{x}\ {\rm {d}}x=x\log _{b}{x}-x\log _{b}{e}+C}
x n ln a x   d x = x n + 1 ( ln a x n + 1 1 ( n + 1 ) 2 ) + C {\displaystyle \int x^{n}\ln ax\ {\rm {d}}x=x^{n+1}\left({\frac {\ln ax}{n+1}}-{\frac {1}{(n+1)^{2}}}\right)+C}
x n ( ln a x ) m   d x = x n + 1 n + 1 ( ln a x ) m m n + 1 x n ( ln a x ) m 1   d x {\displaystyle \int x^{n}\left(\ln ax\right)^{m}\ {\rm {d}}x={\frac {x^{n+1}}{n+1}}\left(\ln ax\right)^{m}-{\frac {m}{n+1}}\int x^{n}\left(\ln ax\right)^{m-1}\ {\rm {d}}x}

Goniometrische functies

sin x   d x = cos x + C {\displaystyle \int \sin {x}\ {\rm {d}}x=-\cos {x}+C}
cos x   d x = sin x + C {\displaystyle \int \cos {x}\ {\rm {d}}x=\sin {x}+C}
tan x   d x = ln | cos x | + C {\displaystyle \int \tan {x}\ {\rm {d}}x=-\ln {\left|\cos {x}\right|}+C}
cot x   d x = ln | sin x | + C {\displaystyle \int \cot {x}\ {\rm {d}}x=\ln {\left|\sin {x}\right|}+C}
sec x   d x = ln | sec x + tan x | + C {\displaystyle \int \sec {x}\ {\rm {d}}x=\ln {\left|\sec {x}+\tan {x}\right|}+C}
csc x   d x = ln | csc x cot x | + C {\displaystyle \int \csc {x}\ {\rm {d}}x=\ln {\left|\csc {x}-\cot {x}\right|}+C}
1 sin x   d x = ln | tan 1 2 x | + C = ln | 1 sin x cot x | + C {\displaystyle \int {\frac {1}{\sin x}}\ {\rm {d}}x=\ln \left|\tan {\tfrac {1}{2}}x\right|+C=\ln \left|{\frac {1}{\sin x}}-\cot x\right|+C}
1 cos x   d x = ln | tan 1 2 x + 1 4 π | + C = ln | 1 cos x + tan x | + C {\displaystyle \int {\frac {1}{\cos x}}\ {\rm {d}}x=\ln \left|\tan {\tfrac {1}{2}}x+{\tfrac {1}{4}}\pi \right|+C=\ln \left|{\frac {1}{\cos x}}+\tan x\right|+C}
arcsin x a   d x = x arcsin x a + a 2 x 2 + C , a > 0 {\displaystyle \int \arcsin {\frac {x}{a}}\ {\rm {d}}x=x\arcsin {\frac {x}{a}}+{\sqrt {a^{2}-x^{2}}}+C,\quad a>0}
arccos x a   d x = x arccos x a a 2 x 2 + C , a > 0 {\displaystyle \int \arccos {\frac {x}{a}}\ {\rm {d}}x=x\arccos {\frac {x}{a}}-{\sqrt {a^{2}-x^{2}}}+C,\quad a>0}
arctan x a   d x = x arctan x a a 2 ln ( a 2 + x 2 ) + C , a > 0 {\displaystyle \int \arctan {\frac {x}{a}}\ {\rm {d}}x=x\arctan {\frac {x}{a}}-{\frac {a}{2}}\ln \left(a^{2}+x^{2}\right)+C,\quad a>0}
1 cos 2 x   d x = sec 2 x   d x = tan x + C {\displaystyle \int {\frac {1}{\cos ^{2}x}}\ {\rm {d}}x=\int \sec ^{2}x\ {\rm {d}}x=\tan x+C}
1 sin 2 x   d x = csc 2 x   d x = cot x + C {\displaystyle \int {\frac {1}{\sin ^{2}x}}\ {\rm {d}}x=\int \csc ^{2}x\ {\rm {d}}x=-\cot x+C}
sec x   tan x   d x = sec x + C {\displaystyle \int \sec {x}\ \tan {x}\ {\rm {d}}x=\sec {x}+C}
csc x   cot x   d x = csc x + C {\displaystyle \int \csc {x}\ \cot {x}\ {\rm {d}}x=-\csc {x}+C}
sin 2 x   d x = 1 2 ( x sin x cos x ) + C {\displaystyle \int \sin ^{2}x\ {\rm {d}}x={\tfrac {1}{2}}(x-\sin x\cos x)+C}
cos 2 x   d x = 1 2 ( x + sin x cos x ) + C {\displaystyle \int \cos ^{2}x\ {\rm {d}}x={\tfrac {1}{2}}(x+\sin x\cos x)+C}
sin n x   d x = sin n 1 x cos x n + n 1 n sin n 2 x   d x {\displaystyle \int \sin ^{n}x\ {\rm {d}}x=-{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\ {\rm {d}}x}
cos n x   d x = cos n 1 x sin x n + n 1 n cos n 2 x   d x {\displaystyle \int \cos ^{n}x\ {\rm {d}}x={\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\ {\rm {d}}x}
tan n x   d x = tan n 1 x n 1 tan n 2 x   d x , n 1 {\displaystyle \int \tan ^{n}x\ {\rm {d}}x={\frac {\tan ^{n-1}x}{n-1}}-\int \tan ^{n-2}x\ {\rm {d}}x,\quad n\neq 1}
cot n x   d x = cot n 1 x n 1 cot n 2 x   d x , n 1 {\displaystyle \int \cot ^{n}x\ {\rm {d}}x=-{\frac {\cot ^{n-1}x}{n-1}}-\int \cot ^{n-2}x\ {\rm {d}}x,\quad n\neq 1}
sec n x   d x = tan x sec n 2 x n 1 + n 2 n 1 sec n 2 x   d x , n 1 {\displaystyle \int \sec ^{n}x\ {\rm {d}}x={\frac {\tan x\sec ^{n-2}x}{n-1}}+{\frac {n-2}{n-1}}\int \sec ^{n-2}x\ {\rm {d}}x,\quad n\neq 1}
csc n x   d x = cot x csc n 2 x n 1 + n 2 n 1 csc n 2 x   d x , n 1 {\displaystyle \int \csc ^{n}x\ {\rm {d}}x=-{\frac {\cot x\csc ^{n-2}x}{n-1}}+{\frac {n-2}{n-1}}\int \csc ^{n-2}x\ {\rm {d}}x,\quad n\neq 1}
sin a x sin b x   d x = sin ( a b ) x 2 ( a b ) sin ( a + b ) x 2 ( a + b ) + C , a 2 b 2 {\displaystyle \int \sin ax\sin bx\ {\rm {d}}x={\frac {\sin(a-b)x}{2(a-b)}}-{\frac {\sin(a+b)x}{2(a+b)}}+C,\quad a^{2}\neq b^{2}}
sin a x cos b x   d x = cos ( a b ) x 2 ( a b ) cos ( a + b ) x 2 ( a + b ) + C , a 2 b 2 {\displaystyle \int \sin ax\cos bx\ {\rm {d}}x=-{\frac {\cos(a-b)x}{2(a-b)}}-{\frac {\cos(a+b)x}{2(a+b)}}+C,\quad a^{2}\neq b^{2}}
cos a x cos b x   d x = sin ( a b ) x 2 ( a b ) + sin ( a + b ) x 2 ( a + b ) + C , a 2 b 2 {\displaystyle \int \cos ax\cos bx\ {\rm {d}}x={\frac {\sin(a-b)x}{2(a-b)}}+{\frac {\sin(a+b)x}{2(a+b)}}+C,\quad a^{2}\neq b^{2}}
sec x tan x   d x = sec x + C {\displaystyle \int \sec x\tan x\ {\rm {d}}x=\sec x+C}
csc x cot x   d x = csc x + C {\displaystyle \int \csc x\cot x\ {\rm {d}}x=-\csc x+C}
cos m x sin n x   d x = cos m 1 x sin n + 1 x m + n + m 1 m + n cos m 2 x sin n x   d x {\displaystyle \int \cos ^{m}x\sin ^{n}x\ {\rm {d}}x={\frac {\cos ^{m-1}x\sin ^{n+1}x}{m+n}}+{\frac {m-1}{m+n}}\int \cos ^{m-2}x\sin ^{n}x\ {\rm {d}}x}
= sin n 1 x cos m + 1 x m + n + n 1 m + n cos m x sin n 2 x   d x {\displaystyle =-{\frac {\sin ^{n-1}x\cos ^{m+1}x}{m+n}}+{\frac {n-1}{m+n}}\int \cos ^{m}x\sin ^{n-2}x\ {\rm {d}}x}
x n sin a x   d x = 1 a x n cos a x + n a x n 1 cos a x   d x {\displaystyle \int x^{n}\sin ax\ {\rm {d}}x=-{\frac {1}{a}}x^{n}\cos ax+{\frac {n}{a}}\int x^{n-1}\cos ax\ {\rm {d}}x}
x n cos a x   d x = 1 a x n sin a x n a x n 1 sin a x   d x {\displaystyle \int x^{n}\cos ax\ {\rm {d}}x={\frac {1}{a}}x^{n}\sin ax-{\frac {n}{a}}\int x^{n-1}\sin ax\ {\rm {d}}x}
e a x sin b x   d x = e a x ( a sin b x b cos b x ) a 2 + b 2 + C {\displaystyle \int e^{ax}\sin bx\ {\rm {d}}x={\frac {e^{ax}\left(a\sin bx-b\cos bx\right)}{a^{2}+b^{2}}}+C}
e a x cos b x   d x = e a x ( b sin b x + a cos b x ) a 2 + b 2 + C {\displaystyle \int e^{ax}\cos bx\ {\rm {d}}x={\frac {e^{ax}\left(b\sin bx+a\cos bx\right)}{a^{2}+b^{2}}}+C}

Hyperbolische functies

sinh x   d x = cosh x + C {\displaystyle \int \sinh x\ {\rm {d}}x=\cosh x+C}
cosh x   d x = sinh x + C {\displaystyle \int \cosh x\ {\rm {d}}x=\sinh x+C}
tanh x   d x = ln | cosh x | + C {\displaystyle \int \tanh x\ {\rm {d}}x=\ln |\cosh x|+C}
csch   x   d x = ln | tanh x 2 | + C {\displaystyle \int \operatorname {csch} \ x\ {\rm {d}}x=\ln \left|\tanh {x \over 2}\right|+C}
sech   x   d x = arctan ( sinh x ) + C {\displaystyle \int \operatorname {sech} \ x\ {\rm {d}}x=\arctan(\sinh x)+C}
coth x   d x = ln | sinh x | + C {\displaystyle \int \coth x\ {\rm {d}}x=\ln |\sinh x|+C}
sinh 2 x   d x = 1 4 sinh 2 x 1 2 x + C {\displaystyle \int \sinh ^{2}x\ {\rm {d}}x={\frac {1}{4}}\sinh 2x-{\frac {1}{2}}x+C}
cosh 2 x   d x = 1 4 sinh 2 x + 1 2 x + C {\displaystyle \int \cosh ^{2}x\ {\rm {d}}x={\frac {1}{4}}\sinh 2x+{\frac {1}{2}}x+C}
sech 2 x   d x = tanh x + C {\displaystyle \int \operatorname {sech} ^{2}x\ {\rm {d}}x=\tanh x+C}
1 sinh 2 x   d x = coth x + C {\displaystyle \int {\frac {1}{\sinh ^{2}x}}\ {\rm {d}}x=-\operatorname {\coth } x+C}
sinh 1 x a   d x = x sinh 1 x a x 2 + a 2 + C {\displaystyle \int \sinh ^{-1}{\frac {x}{a}}\ {\rm {d}}x=x\sinh ^{-1}{\frac {x}{a}}-{\sqrt {x^{2}+a^{2}}}+C}
cosh 1 x a   d x = x cosh 1 x a x 2 a 2 + C , cosh 1 x a < 0    en    a > 0 {\displaystyle \int \cosh ^{-1}{\frac {x}{a}}\ {\rm {d}}x=x\cosh ^{-1}{\frac {x}{a}}-{\sqrt {x^{2}-a^{2}}}+C,\quad \cosh ^{-1}{\frac {x}{a}}<0\ {\mbox{ en }}\ a>0}
cosh 1 x a   d x = x cosh 1 x a + x 2 a 2 + C , cosh 1 x a < 0    en    a > 0 {\displaystyle \int \cosh ^{-1}{\frac {x}{a}}\ {\rm {d}}x=x\cosh ^{-1}{\frac {x}{a}}+{\sqrt {x^{2}-a^{2}}}+C,\quad \cosh ^{-1}{\frac {x}{a}}<0\ {\mbox{ en }}\ a>0}
tanh 1 x a   d x = x tanh 1 x a + a 2 ln | a 2 x 2 | + C {\displaystyle \int \tanh ^{-1}{\frac {x}{a}}\ {\rm {d}}x=x\tanh ^{-1}{\frac {x}{a}}+{\frac {a}{2}}\ln \left|a^{2}-x^{2}\right|+C}
sech x tanh x   d x = sech x + C {\displaystyle \int \operatorname {sech} x\tanh x\ {\rm {d}}x=-\operatorname {sech} x+C}
csch x coth x   d x = csch x + C {\displaystyle \int \operatorname {csch} x\coth x\ {\rm {d}}x=-\operatorname {csch} x+C}