Nabla in coordinate cilindriche e sferiche

Niente fonti!
Questa voce o sezione sull'argomento matematica non cita le fonti necessarie o quelle presenti sono insufficienti.

Nel calcolo vettoriale è spesso utile conoscere come esprimere {\displaystyle \nabla } in altri sistemi di coordinate diversi da quello cartesiano.

Operatore Coordinate cartesiane (x,y,z) Coordinate cilindriche (ρ,φ,z) Coordinate sferiche (r,θ,φ)
Definizione delle coordinate   { x = ρ cos ϕ y = ρ sin ϕ z = z {\displaystyle {\begin{cases}x&=&\rho \cos \phi \\y&=&\rho \sin \phi \\z&=&z\end{cases}}} { x = r sin θ cos ϕ 0 θ π y = r sin θ sin ϕ 0 ϕ < 2 π z = r cos θ 0 r < + {\displaystyle {\begin{cases}x&=&r\sin \theta \cos \phi &0\leqslant \theta \leqslant \pi \\y&=&r\sin \theta \sin \phi &0\leqslant \phi <2\pi \\z&=&r\cos \theta &0\leqslant r<+\infty \\\end{cases}}}
{ ρ = x 2 + y 2 ϕ = arctan ( y / x ) z = z {\displaystyle {\begin{cases}\rho &=&{\sqrt {x^{2}+y^{2}}}\\\phi &=&\arctan(y/x)\\z&=&z\end{cases}}} { r = x 2 + y 2 + z 2 θ = arccos ( z / r ) ϕ = arctan ( y / x ) {\displaystyle {\begin{cases}r&=&{\sqrt {x^{2}+y^{2}+z^{2}}}\\\theta &=&\arccos(z/r)\\\phi &=&\arctan(y/x)\end{cases}}}
Campo vettoriale A {\displaystyle \mathbf {A} } A x x ^ + A y y ^ + A z z ^ {\displaystyle A_{x}\mathbf {\hat {x}} +A_{y}\mathbf {\hat {y}} +A_{z}\mathbf {\hat {z}} } A ρ ρ ^ + A ϕ ϕ ^ + A z z ^ {\displaystyle A_{\rho }{\boldsymbol {\hat {\rho }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}+A_{z}{\boldsymbol {\hat {z}}}} A r r ^ + A θ θ ^ + A ϕ ϕ ^ {\displaystyle A_{r}{\boldsymbol {\hat {r}}}+A_{\theta }{\boldsymbol {\hat {\theta }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}}
Gradiente f {\displaystyle \nabla f} f x x ^ + f y y ^ + f z z ^ {\displaystyle {\partial f \over \partial x}\mathbf {\hat {x}} +{\partial f \over \partial y}\mathbf {\hat {y}} +{\partial f \over \partial z}\mathbf {\hat {z}} } f ρ ρ ^ + 1 ρ f ϕ ϕ ^ + f z z ^ {\displaystyle {\partial f \over \partial \rho }{\boldsymbol {\hat {\rho }}}+{1 \over \rho }{\partial f \over \partial \phi }{\boldsymbol {\hat {\phi }}}+{\partial f \over \partial z}{\boldsymbol {\hat {z}}}} f r r ^ + 1 r f θ θ ^ + 1 r sin θ f ϕ ϕ ^ {\displaystyle {\partial f \over \partial r}{\boldsymbol {\hat {r}}}+{1 \over r}{\partial f \over \partial \theta }{\boldsymbol {\hat {\theta }}}+{1 \over r\sin \theta }{\partial f \over \partial \phi }{\boldsymbol {\hat {\phi }}}}
Divergenza A {\displaystyle \nabla \cdot \mathbf {A} } A x x + A y y + A z z {\displaystyle {\partial A_{x} \over \partial x}+{\partial A_{y} \over \partial y}+{\partial A_{z} \over \partial z}} 1 ρ ( ρ A ρ ) ρ + 1 ρ A ϕ ϕ + A z z {\displaystyle {1 \over \rho }{\partial (\rho A_{\rho }) \over \partial \rho }+{1 \over \rho }{\partial A_{\phi } \over \partial \phi }+{\partial A_{z} \over \partial z}} 1 r 2 ( r 2 A r ) r + 1 r sin θ θ ( A θ sin θ ) + 1 r sin θ A ϕ ϕ {\displaystyle {1 \over r^{2}}{\partial (r^{2}A_{r}) \over \partial r}+{1 \over r\sin \theta }{\partial \over \partial \theta }(A_{\theta }\sin \theta )+{1 \over r\sin \theta }{\partial A_{\phi } \over \partial \phi }}
Rotore × A {\displaystyle \nabla \times \mathbf {A} } ( A z y A y z ) x ^ + ( A x z A z x ) y ^ + ( A y x A x y ) z ^   {\displaystyle {\begin{matrix}\displaystyle {\bigg (}{\partial A_{z} \over \partial y}-{\partial A_{y} \over \partial z}{\bigg )}\mathbf {\hat {x}} &+\\\displaystyle {\bigg (}{\partial A_{x} \over \partial z}-{\partial A_{z} \over \partial x}{\bigg )}\mathbf {\hat {y}} &+\\\displaystyle {\bigg (}{\partial A_{y} \over \partial x}-{\partial A_{x} \over \partial y}{\bigg )}\mathbf {\hat {z}} &\ \end{matrix}}} ( 1 ρ A z ϕ A ϕ z ) ρ ^ + ( A ρ z A z ρ ) ϕ ^ + 1 ρ ( ( ρ A ϕ ) ρ A ρ ϕ ) z ^   {\displaystyle {\begin{matrix}\displaystyle {\bigg (}{1 \over \rho }{\partial A_{z} \over \partial \phi }-{\partial A_{\phi } \over \partial z}{\bigg )}{\boldsymbol {\hat {\rho }}}&+\\\displaystyle {\bigg (}{\partial A_{\rho } \over \partial z}-{\partial A_{z} \over \partial \rho }{\bigg )}{\boldsymbol {\hat {\phi }}}&+\\\displaystyle {1 \over \rho }{\bigg (}{\partial (\rho A_{\phi }) \over \partial \rho }-{\partial A_{\rho } \over \partial \phi }{\bigg )}{\boldsymbol {\hat {z}}}&\ \end{matrix}}} 1 r sin θ ( θ ( A ϕ sin θ ) A θ ϕ ) r ^ + 1 r ( 1 sin θ A r ϕ r ( r A ϕ ) ) θ ^ + 1 r ( r ( r A θ ) A r θ ) ϕ ^   {\displaystyle {\begin{matrix}\displaystyle {1 \over r\sin \theta }{\bigg (}{\partial \over \partial \theta }(A_{\phi }\sin \theta )-{\partial A_{\theta } \over \partial \phi }{\bigg )}{\boldsymbol {\hat {r}}}&+\\\displaystyle {1 \over r}{\bigg (}{1 \over \sin \theta }{\partial A_{r} \over \partial \phi }-{\partial \over \partial r}(rA_{\phi }){\bigg )}{\boldsymbol {\hat {\theta }}}&+\\\displaystyle {1 \over r}{\bigg (}{\partial \over \partial r}(rA_{\theta })-{\partial A_{r} \over \partial \theta }{\bigg )}{\boldsymbol {\hat {\phi }}}&\ \end{matrix}}}
Laplaciano 2 f {\displaystyle \nabla ^{2}f} 2 f x 2 + 2 f y 2 + 2 f z 2 {\displaystyle {\partial ^{2}f \over \partial x^{2}}+{\partial ^{2}f \over \partial y^{2}}+{\partial ^{2}f \over \partial z^{2}}} 1 ρ ρ ( ρ f ρ ) + 1 ρ 2 2 f ϕ 2 + 2 f z 2 {\displaystyle {1 \over \rho }{\partial \over \partial \rho }{\bigg (}\rho {\partial f \over \partial \rho }{\bigg )}+{1 \over \rho ^{2}}{\partial ^{2}f \over \partial \phi ^{2}}+{\partial ^{2}f \over \partial z^{2}}} 1 r 2 r ( r 2 f r ) + 1 r 2 sin θ θ ( sin θ f θ ) + 1 r 2 sin 2 θ 2 f ϕ 2 {\displaystyle {1 \over r^{2}}{\partial \over \partial r}{\bigg (}r^{2}{\partial f \over \partial r}{\bigg )}+{1 \over r^{2}\sin \theta }{\partial \over \partial \theta }{\bigg (}\sin \theta {\partial f \over \partial \theta }{\bigg )}+{1 \over r^{2}\sin ^{2}\theta }{\partial ^{2}f \over \partial \phi ^{2}}}
Laplaciano di un vettore 2 A {\displaystyle \nabla ^{2}\mathbf {A} } 2 A x x ^ + 2 A y y ^ + 2 A z z ^ {\displaystyle \nabla ^{2}A_{x}\mathbf {\hat {x}} +\nabla ^{2}A_{y}\mathbf {\hat {y}} +\nabla ^{2}A_{z}\mathbf {\hat {z}} } ( 2 A ρ A ρ ρ 2 2 ρ 2 A ϕ ϕ ) ρ ^ + ( 2 A ϕ A ϕ ρ 2 + 2 ρ 2 A ρ ϕ ) ϕ ^ + ( 2 A z ) z ^   {\displaystyle {\begin{matrix}\displaystyle {\bigg (}\nabla ^{2}A_{\rho }-{A_{\rho } \over \rho ^{2}}-{2 \over \rho ^{2}}{\partial A_{\phi } \over \partial \phi }{\bigg )}{\boldsymbol {\hat {\rho }}}&+\\\displaystyle {\bigg (}\nabla ^{2}A_{\phi }-{A_{\phi } \over \rho ^{2}}+{2 \over \rho ^{2}}{\partial A_{\rho } \over \partial \phi }{\bigg )}{\boldsymbol {\hat {\phi }}}&+\\\displaystyle (\nabla ^{2}A_{z}){\boldsymbol {\hat {z}}}&\ \end{matrix}}} ( 2 A r 2 A r r 2 2 r 2 sin θ ( A θ sin θ ) θ 2 r 2 sin θ A ϕ ϕ ) r ^ + ( 2 A θ A θ r 2 sin 2 θ + 2 r 2 A r θ 2 cos θ r 2 sin 2 θ A ϕ ϕ ) θ ^ + ( 2 A ϕ A ϕ r 2 sin 2 θ + 2 r 2 sin θ A r ϕ + 2 cos θ r 2 sin 2 θ A θ ϕ ) ϕ ^ {\displaystyle {\begin{matrix}{\bigg (}\nabla ^{2}A_{r}-{2A_{r} \over r^{2}}-{2 \over r^{2}\sin \theta }{\partial (A_{\theta }\sin \theta ) \over \partial \theta }-{2 \over r^{2}\sin \theta }{\partial A_{\phi } \over \partial \phi }{\bigg )}{\boldsymbol {\hat {r}}}&+\\{\bigg (}\nabla ^{2}A_{\theta }-{A_{\theta } \over r^{2}\sin ^{2}\theta }+{2 \over r^{2}}{\partial A_{r} \over \partial \theta }-{2\cos \theta \over r^{2}\sin ^{2}\theta }{\partial A_{\phi } \over \partial \phi }{\bigg )}{\boldsymbol {\hat {\theta }}}&+\\{\bigg (}\nabla ^{2}A_{\phi }-{A_{\phi } \over r^{2}\sin ^{2}\theta }+{2 \over r^{2}\sin \theta }{\partial A_{r} \over \partial \phi }+{2\cos \theta \over r^{2}\sin ^{2}\theta }{\partial A_{\theta } \over \partial \phi }{\bigg )}{\boldsymbol {\hat {\phi }}}&\end{matrix}}}
Lunghezza infinitesima d l = d x x ^ + d y y ^ + d z z ^ {\displaystyle d\mathbf {l} =dx\mathbf {\hat {x}} +dy\mathbf {\hat {y}} +dz\mathbf {\hat {z}} } d l = d ρ ρ ^ + ρ d ϕ ϕ ^ + d z z ^ {\displaystyle d\mathbf {l} =d\rho {\boldsymbol {\hat {\rho }}}+\rho d\phi {\boldsymbol {\hat {\phi }}}+dz{\boldsymbol {\hat {z}}}} d l = d r r ^ + r d θ θ ^ + r sin θ d ϕ ϕ ^ {\displaystyle d\mathbf {l} =dr\mathbf {\hat {r}} +rd\theta {\boldsymbol {\hat {\theta }}}+r\sin \theta d\phi {\boldsymbol {\hat {\phi }}}}
Area infinitesima d S = d y d z x ^ + d x d z y ^ + d x d y z ^ {\displaystyle {\begin{matrix}d\mathbf {S} =&dydz\mathbf {\hat {x}} +\\&dxdz\mathbf {\hat {y}} +\\&dxdy\mathbf {\hat {z}} \end{matrix}}} d S = ρ d ϕ d z ρ ^ + d ρ d z ϕ ^ + ρ d ρ d ϕ z ^ {\displaystyle {\begin{matrix}d\mathbf {S} =&\rho d\phi dz{\boldsymbol {\hat {\rho }}}+\\&d\rho dz{\boldsymbol {\hat {\phi }}}+\\&\rho d\rho d\phi \mathbf {\hat {z}} \end{matrix}}} d S = r 2 sin θ d θ d ϕ r ^ + r sin θ d r d ϕ θ ^ + r d r d θ ϕ ^ {\displaystyle {\begin{matrix}d\mathbf {S} =&r^{2}\sin \theta d\theta d\phi \mathbf {\hat {r}} +\\&r\sin \theta drd\phi {\boldsymbol {\hat {\theta }}}+\\&rdrd\theta {\boldsymbol {\hat {\phi }}}\end{matrix}}}
Volume infinitesimo d v = d x d y d z {\displaystyle dv=dxdydz} d v = ρ d ρ d ϕ d z {\displaystyle dv=\rho d\rho d\phi dz} d v = ρ 2 sin θ d ρ d θ d ϕ {\displaystyle dv=\rho ^{2}\sin \theta d\rho d\theta d\phi }

Relazioni notevoli (valgono in tutti i sistemi di riferimento)

  • div grad f = ( f ) = 2 f {\displaystyle \operatorname {div} \,\operatorname {grad} f=\nabla \cdot (\nabla f)=\nabla ^{2}f} (Laplaciano)
  • rot grad f = × ( f ) = 0 {\displaystyle \operatorname {rot} \,\operatorname {grad} f=\nabla \times (\nabla f)=0}
  • div rot A = ( × A ) = 0 {\displaystyle \operatorname {div} \,\operatorname {rot} \mathbf {A} =\nabla \cdot (\nabla \times \mathbf {A} )=0}
  • rot rot A = × ( × A ) = ( A ) 2 A {\displaystyle \operatorname {rot} \,\operatorname {rot} \mathbf {A} =\nabla \times (\nabla \times \mathbf {A} )=\nabla (\nabla \cdot \mathbf {A} )-\nabla ^{2}\mathbf {A} }
  • 2 f g = f 2 g + 2 f g + g 2 f {\displaystyle \nabla ^{2}fg=f\nabla ^{2}g+2\nabla f\cdot \nabla g+g\nabla ^{2}f}

Formula di Lagrange per il prodotto vettoriale: A × ( B × C ) = B ( A C ) C ( A B ) {\displaystyle \mathbf {A} \times (\mathbf {B} \times \mathbf {C} )=\mathbf {B} (\mathbf {A} \cdot \mathbf {C} )-\mathbf {C} (\mathbf {A} \cdot \mathbf {B} )}

  • ( f A ) = f A + A f {\displaystyle \nabla \cdot (f\mathbf {A} )=f\nabla \cdot \mathbf {A} +\mathbf {A} \cdot \nabla f}
  • × f A = f × A A × f {\displaystyle \nabla \times f\mathbf {A} =f\nabla \times \mathbf {A} -\mathbf {A} \times \nabla f}
  • ( A B ) = ( A ) B + ( B ) A + A × ( × B ) + B × ( × A ) , {\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B} )=(\mathbf {A} \cdot \nabla )\mathbf {B} +(\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {A} \times (\nabla \times \mathbf {B} )+\mathbf {B} \times (\nabla \times \mathbf {A} ),}
che insieme a A = B = v {\displaystyle \mathbf {A} =\mathbf {B} =\mathbf {v} } segue immediatamente la chiave per il fluido di trasformazione meccanica Weber[senza fonte]:
( v ) v = v 2 2 v × ( × v ) {\displaystyle (\mathbf {v} \cdot \nabla )\mathbf {v} =\nabla {\frac {\left\|\mathbf {v} \right\|^{2}}{2}}-\mathbf {v} \times (\nabla \times \mathbf {v} )}
  • × ( A × B ) = A ( B ) B ( A ) + ( B ) A ( A ) B {\displaystyle \nabla \times (\mathbf {A} \times \mathbf {B} )=\mathbf {A} \,(\nabla \cdot \mathbf {B} )-\mathbf {B} \,(\nabla \cdot \mathbf {A} )+(\mathbf {B} \cdot \nabla )\mathbf {A} -(\mathbf {A} \cdot \nabla )\mathbf {B} }
  • ( A × B ) = B ( × A ) A ( × B ) {\displaystyle \nabla \cdot (\mathbf {A} \times \mathbf {B} )=\mathbf {B} \cdot (\nabla \times \mathbf {A} )-\mathbf {A} \cdot (\nabla \times \mathbf {B} )}

Nota

  • La funzione atan2(y,x) è usata al posto di a r c t a n ( y / x ) {\displaystyle \mathrm {arctan} (y/x)} per il suo dominio. La funzione a r c t a n ( y / x ) {\displaystyle \mathrm {arctan} (y/x)} ha immagine in ( π / 2 , π / 2 ) , {\displaystyle (-\pi /2,\pi /2),} mentre a t a n 2 ( y , x ) {\displaystyle \mathrm {atan2} (y,x)} ha immagine in ( π , π ] . {\displaystyle (-\pi ,\pi ].}

Voci correlate

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica