Totient summatory function

Arithmetic function

In number theory, the totient summatory function Φ ( n ) {\displaystyle \Phi (n)} is a summatory function of Euler's totient function defined by:

Φ ( n ) := k = 1 n φ ( k ) , n N {\displaystyle \Phi (n):=\sum _{k=1}^{n}\varphi (k),\quad n\in \mathbf {N} }

It is the number of coprime integer pairs {p, q}, 1 ≤ p ≤ q ≤ n.

Properties

Using Möbius inversion to the totient function, we obtain

Φ ( n ) = k = 1 n k d k μ ( d ) d = 1 2 k = 1 n μ ( k ) n k ( 1 + n k ) {\displaystyle \Phi (n)=\sum _{k=1}^{n}k\sum _{d\mid k}{\frac {\mu (d)}{d}}={\frac {1}{2}}\sum _{k=1}^{n}\mu (k)\left\lfloor {\frac {n}{k}}\right\rfloor \left(1+\left\lfloor {\frac {n}{k}}\right\rfloor \right)}

Φ(n) has the asymptotic expansion

Φ ( n ) 1 2 ζ ( 2 ) n 2 + O ( n log n ) , {\displaystyle \Phi (n)\sim {\frac {1}{2\zeta (2)}}n^{2}+O\left(n\log n\right),}

where ζ(2) is the Riemann zeta function for the value 2.

Φ(n) is the number of coprime integer pairs {p, q}, 1 ≤ p ≤ q ≤ n.

The summatory of reciprocal totient function

The summatory of reciprocal totient function is defined as

S ( n ) := k = 1 n 1 φ ( k ) {\displaystyle S(n):=\sum _{k=1}^{n}{\frac {1}{\varphi (k)}}}

Edmund Landau showed in 1900 that this function has the asymptotic behavior

S ( n ) A ( γ + log n ) + B + O ( log n n ) {\displaystyle S(n)\sim A(\gamma +\log n)+B+O\left({\frac {\log n}{n}}\right)}

where γ is the Euler–Mascheroni constant,

A = k = 1 μ ( k ) 2 k φ ( k ) = ζ ( 2 ) ζ ( 3 ) ζ ( 6 ) = p ( 1 + 1 p ( p 1 ) ) {\displaystyle A=\sum _{k=1}^{\infty }{\frac {\mu (k)^{2}}{k\varphi (k)}}={\frac {\zeta (2)\zeta (3)}{\zeta (6)}}=\prod _{p}\left(1+{\frac {1}{p(p-1)}}\right)}

and

B = k = 1 μ ( k ) 2 log k k φ ( k ) = A p ( log p p 2 p + 1 ) . {\displaystyle B=\sum _{k=1}^{\infty }{\frac {\mu (k)^{2}\log k}{k\,\varphi (k)}}=A\,\prod _{p}\left({\frac {\log p}{p^{2}-p+1}}\right).}

The constant A = 1.943596... is sometimes known as Landau's totient constant. The sum k = 1 1 k φ ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }{\frac {1}{k\varphi (k)}}} is convergent and equal to:

k = 1 1 k φ ( k ) = ζ ( 2 ) p ( 1 + 1 p 2 ( p 1 ) ) = 2.20386 {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{k\varphi (k)}}=\zeta (2)\prod _{p}\left(1+{\frac {1}{p^{2}(p-1)}}\right)=2.20386\ldots }

In this case, the product over the primes in the right side is a constant known as totient summatory constant,[1] and its value is:

p ( 1 + 1 p 2 ( p 1 ) ) = 1.339784 {\displaystyle \prod _{p}\left(1+{\frac {1}{p^{2}(p-1)}}\right)=1.339784\ldots }

See also

  • Arithmetic function

References

  1. ^ OEIS: A065483
  • Weisstein, Eric W. "Totient Summatory Function". MathWorld.

External links

  • Totient summatory function
  • Decimal expansion of totient constant product(1 + 1/(p^2*(p-1))), p prime >= 2)


  • v
  • t
  • e