Tin telluride

Tin telluride[1]
Names
IUPAC name
Tin telluride
Other names
Tin(II) telluride, Stannous telluride
Identifiers
CAS Number
  • 12040-02-7 checkY
3D model (JSmol)
  • Interactive image
ECHA InfoCard 100.031.728 Edit this at Wikidata
PubChem CID
  • 6432000
CompTox Dashboard (EPA)
  • DTXSID40894844 Edit this at Wikidata
InChI
  • InChI=1S/Sn.Te
  • [Sn]=[Te]
Properties
Chemical formula
SnTe
Molar mass 246.31 g/mol
Appearance gray cubic crystals
Density 6.445 g/cm3 [2]
Melting point 790 °C (1,450 °F; 1,060 K)
Band gap 0.18 eV [3]
Electron mobility 500 cm2 V−1 s−1
Structure
Crystal structure
Halite (cubic), cF8
Space group
Fm3m, No. 225
Lattice constant
a = 0.63 nm
Coordination geometry
Octahedral (Sn2+)
Octahedral (Se2−)
Thermochemistry
Heat capacity (C)
185 J K−1 kg−1
Related compounds
Other anions
Tin(II) oxide
Tin(II) sulfide
Tin selenide
Other cations
Carbon monotelluride
Silicon monotelluride
Germanium telluride
Lead telluride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references
Chemical compound

Tin telluride is a compound of tin and tellurium (SnTe); is a IV-VI narrow band gap semiconductor and has direct band gap of 0.18 eV. It is often alloyed with lead to make lead tin telluride, which is used as an infrared detector material.

Tin telluride normally forms p-type semiconductor (Extrinsic semiconductor) due to tin vacancies and is a low temperature superconductor.[4]

SnTe exists in three crystal phases. At Low temperatures, where the concentration of hole carriers is less than 1.5x1020 cm−3 , Tin Telluride exists in rhombohedral phase also known as α-SnTe. At room temperature and atmospheric pressure, Tin Telluride exists in NaCl-like cubic crystal phase, known as β-SnTe. While at 18 kbar pressure, β-SnTe transforms to γ-SnTe, orthorhombic phase, space group Pnma.[5] This phase change is characterized by 11 percent increase in density and 360 percent increase in resistance for γ-SnTe.[6]

Tin telluride is a thermoelectric material. Theoretical studies imply that the n-type performance may be particularly good.[7]

Thermal properties

Applications

Generally Pb is alloyed with SnTe in order to access interesting optical and electronic properties, In addition, as a result of Quantum confinement, the band gap of the SnTe increases beyond the bulk band gap, covering the mid-IR wavelength range. The alloyed material has been used in mid- IR photodetectors [9] and thermoelectric generator.[10]

References

  1. ^ Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, FL: CRC Press, pp. 4–90, ISBN 978-0-8493-0594-8
  2. ^ Beattie, A. G., J. Appl. Phys., 40, 4818–4821, 1969.
  3. ^ O. Madelung, U. Rössler, M. Schulz; SpringerMaterials; sm_lbs_978-3-540-31360-1_859 (Springer-Verlag GmbH, Heidelberg, 1998), http://materials.springer.com/lb/docs/sm_lbs_978-3-540-31360-1_859;
  4. ^ Hein, R.; Meijer, P. (1969). "Critical Magnetic Fields of Superconducting SnTe". Physical Review. 179 (2): 497. Bibcode:1969PhRv..179..497H. doi:10.1103/PhysRev.179.497.
  5. ^ "Tin telluride (Sn Te) crystal structure, lattice parameters". Non-Tetrahedrally Bonded Elements and Binary Compounds I. Landolt-Börnstein - Group III Condensed Matter. Vol. 41C. 1998. pp. 1–8. doi:10.1007/10681727_862. ISBN 978-3-540-64583-2.
  6. ^ Kafalas, J. A.; Mariano, A. N., High-Pressure Phase Transition in Tin Telluride. Science 1964, 143 (3609), 952-952
  7. ^ Singh, D. J. (2010). "THERMOPOWER OF SnTe FROM BOLTZMANN TRANSPORT CALCULATIONS". Functional Materials Letters. 03 (4): 223–226. arXiv:1006.4151. doi:10.1142/S1793604710001299. S2CID 119223416.
  8. ^ Colin, R.; Drowart, J., Thermodynamic study of tin selenide and tin telluride using a mass spectrometer. Transactions of the Faraday Society 1964, 60 (0), 673-683, DOI: 10.1039/TF9646000673.
  9. ^ Lovett, D. R. Semimetals and narrow-bandgap semiconductors; Pion Limited: London, 1977; Chapter 7.
  10. ^ Das, V. D.; Bahulayan, C., Variation of electrical transport properties and thermoelectric figure of merit with thickness in 1% excess Te-doped Pb 0.2 Sn 0.8 Te thin films. Semiconductor Science and Technology 1995, 10 (12), 1638.

External links

  • Berlin thermophysical properties database
  • Webelements page
  • Landolt-Börnstein Substance/SnTe index
  • Reflectivity of Tin Telluride in the Infrared
  • v
  • t
  • e
Sn(II)
  • SnBr2
  • SnCl2
  • Sn(C5H5)2
  • SnF2
  • SnI2
  • SnC2O4
  • SnO
  • Sn(OH)2
  • C
    18
    H
    36
    SnO
    2
  • SnSO4
  • Sn(CH3COO)2
  • SnSe
  • SnTe
  • SnS
  • SnP3
Sn(IV)
  • SnBr4
  • SnCl4
  • SnF4
  • SnH4
  • SnI4
  • SnO2
  • SnS2
  • Sn(CH3COO)4
  • Sn(NO3)4
  • Sn(IO3)4
  • v
  • t
  • e
Salts and covalent derivatives of the telluride ion
H2Te
-TeH
He
Li2Te BeTe B CTe2
(CH3)2Te
(NH4)2Te O F Ne
Na2Te MgTe Al2Te Si P0.8Te0.2 S Cl Ar
K2Te CaTe Sc2Te3 Ti VTe2 CrTe
Cr2Te3
MnTe
MnTe2
FeTe CoTe NiTe Cu2Te
CuTe
CuTe2
ZnTe GaTe
Ga2Te3
-Ga
GeTe
-Ge
As2Te3
As4Te3
+As
Se +Br Kr
Rb2Te SrTe Y2Te3 ZrTe5 NbTe2 MoTe2 Tc Ru Rh Pd Ag2Te CdTe In2Te3 SnTe
SnTe2
Sb2Te3 Te2-
Te2-
n
I Xe
Cs2Te BaTe * LuTe
Lu2Te3
HfTe5 TaTe2 WTe2
WTe3
ReTe2 Os Ir Pt AuxTey HgTe Tl2Te PbTe Bi2Te3 Po At Rn
Fr RaTe ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaTe
La2Te3
CeTe
Ce2Te3
PrTe
Pr2Te3
NdTe
Nd2Te3
Pm SmTe
Sm2Te3
EuTe
Eu2Te3
GdTe
Gd2Te3
TbTe
Tb2Te3
DyTe
Dy2Te3
HoTe
Ho2Te3
ErTe
Er2Te3
TmTe
Tm2Te3
YbTe
Yb2Te3
** Ac ThTe2 Pa UTe2 Np Pu Am Cm Bk Cf Es Fm Md No