Silverman–Toeplitz theorem

Theorem of summability methods

In mathematics, the Silverman–Toeplitz theorem, first proved by Otto Toeplitz, is a result in summability theory characterizing matrix summability methods that are regular. A regular matrix summability method is a matrix transformation of a convergent sequence which preserves the limit.[1]

An infinite matrix ( a i , j ) i , j N {\displaystyle (a_{i,j})_{i,j\in \mathbb {N} }} with complex-valued entries defines a regular summability method if and only if it satisfies all of the following properties:

lim i a i , j = 0 j N (Every column sequence converges to 0.) lim i j = 0 a i , j = 1 (The row sums converge to 1.) sup i j = 0 | a i , j | < (The absolute row sums are bounded.) {\displaystyle {\begin{aligned}&\lim _{i\to \infty }a_{i,j}=0\quad j\in \mathbb {N} &&{\text{(Every column sequence converges to 0.)}}\\[3pt]&\lim _{i\to \infty }\sum _{j=0}^{\infty }a_{i,j}=1&&{\text{(The row sums converge to 1.)}}\\[3pt]&\sup _{i}\sum _{j=0}^{\infty }\vert a_{i,j}\vert <\infty &&{\text{(The absolute row sums are bounded.)}}\end{aligned}}}

An example is Cesaro summation, a matrix summability method with

a m n = { 1 m n m 0 n > m = ( 1 0 0 0 0 1 2 1 2 0 0 0 1 3 1 3 1 3 0 0 1 4 1 4 1 4 1 4 0 1 5 1 5 1 5 1 5 1 5 ) , {\displaystyle a_{mn}={\begin{cases}{\frac {1}{m}}&n\leq m\\0&n>m\end{cases}}={\begin{pmatrix}1&0&0&0&0&\cdots \\{\frac {1}{2}}&{\frac {1}{2}}&0&0&0&\cdots \\{\frac {1}{3}}&{\frac {1}{3}}&{\frac {1}{3}}&0&0&\cdots \\{\frac {1}{4}}&{\frac {1}{4}}&{\frac {1}{4}}&{\frac {1}{4}}&0&\cdots \\{\frac {1}{5}}&{\frac {1}{5}}&{\frac {1}{5}}&{\frac {1}{5}}&{\frac {1}{5}}&\cdots \\\vdots &\vdots &\vdots &\vdots &\vdots &\ddots \\\end{pmatrix}},}

References

Citations

  1. ^ Silverman–Toeplitz theorem, by Ruder, Brian, Published 1966, Call number LD2668 .R4 1966 R915, Publisher Kansas State University, Internet Archive

Further reading

  • Toeplitz, Otto (1911) "Über allgemeine lineare Mittelbildungen." Prace mat.-fiz., 22, 113–118 (the original paper in German)
  • Silverman, Louis Lazarus (1913) "On the definition of the sum of a divergent series." University of Missouri Studies, Math. Series I, 1–96
  • Hardy, G. H. (1949), Divergent Series, Oxford: Clarendon Press, 43-48.
  • Boos, Johann (2000). Classical and modern methods in summability. New York: Oxford University Press. ISBN 019850165X.