Pre-measure

In mathematics, a pre-measure is a set function that is, in some sense, a precursor to a bona fide measure on a given space. Indeed, one of the fundamental theorems in measure theory states that a pre-measure can be extended to a measure.

Definition

Families F {\displaystyle {\mathcal {F}}} of sets over Ω {\displaystyle \Omega }
  • v
  • t
  • e
Is necessarily true of F : {\displaystyle {\mathcal {F}}\colon }
or, is F {\displaystyle {\mathcal {F}}} closed under:
Directed
by {\displaystyle \,\supseteq }
A B {\displaystyle A\cap B} A B {\displaystyle A\cup B} B A {\displaystyle B\setminus A} Ω A {\displaystyle \Omega \setminus A} A 1 A 2 {\displaystyle A_{1}\cap A_{2}\cap \cdots } A 1 A 2 {\displaystyle A_{1}\cup A_{2}\cup \cdots } Ω F {\displaystyle \Omega \in {\mathcal {F}}} F {\displaystyle \varnothing \in {\mathcal {F}}} F.I.P.
π-system Yes Yes No No No No No No No No
Semiring Yes Yes No No No No No No Yes Never
Semialgebra (Semifield) Yes Yes No No No No No No Yes Never
Monotone class No No No No No only if A i {\displaystyle A_{i}\searrow } only if A i {\displaystyle A_{i}\nearrow } No No No
𝜆-system (Dynkin System) Yes No No only if
A B {\displaystyle A\subseteq B}
Yes No only if A i {\displaystyle A_{i}\nearrow } or
they are disjoint
Yes Yes Never
Ring (Order theory) Yes Yes Yes No No No No No No No
Ring (Measure theory) Yes Yes Yes Yes No No No No Yes Never
δ-Ring Yes Yes Yes Yes No Yes No No Yes Never
𝜎-Ring Yes Yes Yes Yes No Yes Yes No Yes Never
Algebra (Field) Yes Yes Yes Yes Yes No No Yes Yes Never
𝜎-Algebra (𝜎-Field) Yes Yes Yes Yes Yes Yes Yes Yes Yes Never
Dual ideal Yes Yes Yes No No No Yes Yes No No
Filter Yes Yes Yes Never Never No Yes Yes F {\displaystyle \varnothing \not \in {\mathcal {F}}} Yes
Prefilter (Filter base) Yes No No Never Never No No No F {\displaystyle \varnothing \not \in {\mathcal {F}}} Yes
Filter subbase No No No Never Never No No No F {\displaystyle \varnothing \not \in {\mathcal {F}}} Yes
Open Topology Yes Yes Yes No No No
(even arbitrary {\displaystyle \cup } )
Yes Yes Never
Closed Topology Yes Yes Yes No No
(even arbitrary {\displaystyle \cap } )
No Yes Yes Never
Is necessarily true of F : {\displaystyle {\mathcal {F}}\colon }
or, is F {\displaystyle {\mathcal {F}}} closed under:
directed
downward
finite
intersections
finite
unions
relative
complements
complements
in Ω {\displaystyle \Omega }
countable
intersections
countable
unions
contains Ω {\displaystyle \Omega } contains {\displaystyle \varnothing } Finite
Intersection
Property

Additionally, a semiring is a π-system where every complement B A {\displaystyle B\setminus A} is equal to a finite disjoint union of sets in F . {\displaystyle {\mathcal {F}}.}
A semialgebra is a semiring where every complement Ω A {\displaystyle \Omega \setminus A} is equal to a finite disjoint union of sets in F . {\displaystyle {\mathcal {F}}.}
A , B , A 1 , A 2 , {\displaystyle A,B,A_{1},A_{2},\ldots } are arbitrary elements of F {\displaystyle {\mathcal {F}}} and it is assumed that F . {\displaystyle {\mathcal {F}}\neq \varnothing .}

Let R {\displaystyle R} be a ring of subsets (closed under union and relative complement) of a fixed set X {\displaystyle X} and let μ 0 : R [ 0 , ] {\displaystyle \mu _{0}:R\to [0,\infty ]} be a set function. μ 0 {\displaystyle \mu _{0}} is called a pre-measure if

μ 0 ( ) = 0 {\displaystyle \mu _{0}(\varnothing )=0}
and, for every countable (or finite) sequence A 1 , A 2 , R {\displaystyle A_{1},A_{2},\ldots \in R} of pairwise disjoint sets whose union lies in R , {\displaystyle R,}
μ 0 ( n = 1 A n ) = n = 1 μ 0 ( A n ) . {\displaystyle \mu _{0}\left(\bigcup _{n=1}^{\infty }A_{n}\right)=\sum _{n=1}^{\infty }\mu _{0}(A_{n}).}
The second property is called σ {\displaystyle \sigma } -additivity.

Thus, what is missing for a pre-measure to be a measure is that it is not necessarily defined on a sigma-algebra (or a sigma-ring).

Carathéodory's extension theorem

It turns out that pre-measures give rise quite naturally to outer measures, which are defined for all subsets of the space X . {\displaystyle X.} More precisely, if μ 0 {\displaystyle \mu _{0}} is a pre-measure defined on a ring of subsets R {\displaystyle R} of the space X , {\displaystyle X,} then the set function μ {\displaystyle \mu ^{*}} defined by

μ ( S ) = inf { i = 1 μ 0 ( A i ) | A i R , S i = 1 A i } {\displaystyle \mu ^{*}(S)=\inf \left\{\left.\sum _{i=1}^{\infty }\mu _{0}(A_{i})\right|A_{i}\in R,S\subseteq \bigcup _{i=1}^{\infty }A_{i}\right\}}
is an outer measure on X {\displaystyle X} and the measure μ {\displaystyle \mu } induced by μ {\displaystyle \mu ^{*}} on the σ {\displaystyle \sigma } -algebra Σ {\displaystyle \Sigma } of Carathéodory-measurable sets satisfies μ ( A ) = μ 0 ( A ) {\displaystyle \mu (A)=\mu _{0}(A)} for A R {\displaystyle A\in R} (in particular, Σ {\displaystyle \Sigma } includes R {\displaystyle R} ). The infimum of the empty set is taken to be + . {\displaystyle +\infty .}

(Note that there is some variation in the terminology used in the literature. For example, Rogers (1998) uses "measure" where this article uses the term "outer measure". Outer measures are not, in general, measures, since they may fail to be σ {\displaystyle \sigma } -additive.)

See also

  • Hahn-Kolmogorov theorem – Theorem extending pre-measures to measuresPages displaying short descriptions of redirect targets

References

  • Munroe, M. E. (1953). Introduction to measure and integration. Cambridge, Mass.: Addison-Wesley Publishing Company Inc. p. 310. MR0053186
  • Rogers, C. A. (1998). Hausdorff measures. Cambridge Mathematical Library (Third ed.). Cambridge: Cambridge University Press. p. 195. ISBN 0-521-62491-6. MR1692618 (See section 1.2.)
  • Folland, G. B. (1999). Real Analysis. Pure and Applied Mathematics (Second ed.). New York: John Wiley & Sons, Inc. pp. 30–31. ISBN 0-471-31716-0.
  • v
  • t
  • e
Basic concepts
Sets
Types of Measures
Particular measures
Maps
Main results
Other results
For Lebesgue measure
Applications & related