Positive operator (Hilbert space)

In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator A {\displaystyle A} acting on an inner product space is called positive-semidefinite (or non-negative) if, for every x Dom ( A ) {\displaystyle x\in \mathop {\text{Dom}} (A)} , A x , x R {\displaystyle \langle Ax,x\rangle \in \mathbb {R} } and A x , x 0 {\displaystyle \langle Ax,x\rangle \geq 0} , where Dom ( A ) {\displaystyle \mathop {\text{Dom}} (A)} is the domain of A {\displaystyle A} . Positive-semidefinite operators are denoted as A 0 {\displaystyle A\geq 0} . The operator is said to be positive-definite, and written A > 0 {\displaystyle A>0} , if A x , x > 0 , {\displaystyle \langle Ax,x\rangle >0,} for all x D o m ( A ) { 0 } {\displaystyle x\in \mathop {\mathrm {Dom} } (A)\setminus \{0\}} .[1]

Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator. We show below that for a complex Hilbert space the self adjointness follows automatically from non-negativity. For a real Hilbert space non-negativity does not imply self adjointness.

In physics (specifically quantum mechanics), such operators represent quantum states, via the density matrix formalism.

Cauchy–Schwarz inequality

Take the inner product , {\displaystyle \langle \cdot ,\cdot \rangle } to be anti-linear on the first argument and linear on the second and suppose that A {\displaystyle A} is positive and symmetric, the latter meaning that A x , y = x , A y {\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle } . Then the non negativity of

A ( λ x + μ y ) , λ x + μ y = | λ | 2 A x , x + λ μ A x , y + λ μ A y , x + | μ | 2 A y , y = | λ | 2 A x , x + λ μ A x , y + λ μ ( A x , y ) + | μ | 2 A y , y {\displaystyle {\begin{aligned}\langle A(\lambda x+\mu y),\lambda x+\mu y\rangle =|\lambda |^{2}\langle Ax,x\rangle +\lambda ^{*}\mu \langle Ax,y\rangle +\lambda \mu ^{*}\langle Ay,x\rangle +|\mu |^{2}\langle Ay,y\rangle \\[1mm]=|\lambda |^{2}\langle Ax,x\rangle +\lambda ^{*}\mu \langle Ax,y\rangle +\lambda \mu ^{*}(\langle Ax,y\rangle )^{*}+|\mu |^{2}\langle Ay,y\rangle \end{aligned}}}

for all complex λ {\displaystyle \lambda } and μ {\displaystyle \mu } shows that

| A x , y | 2 A x , x A y , y . {\displaystyle \left|\langle Ax,y\rangle \right|^{2}\leq \langle Ax,x\rangle \langle Ay,y\rangle .}

It follows that Im A Ker A . {\displaystyle \mathop {\text{Im}} A\perp \mathop {\text{Ker}} A.} If A {\displaystyle A} is defined everywhere, and A x , x = 0 , {\displaystyle \langle Ax,x\rangle =0,} then A x = 0. {\displaystyle Ax=0.}

On a complex Hilbert space, if an operator is non-negative then it is symmetric

For x , y Dom A , {\displaystyle x,y\in \mathop {\text{Dom}} A,} the polarization identity

A x , y = 1 4 ( A ( x + y ) , x + y A ( x y ) , x y i A ( x + i y ) , x + i y + i A ( x i y ) , x i y ) {\displaystyle {\begin{aligned}\langle Ax,y\rangle ={\frac {1}{4}}({}&\langle A(x+y),x+y\rangle -\langle A(x-y),x-y\rangle \\[1mm]&{}-i\langle A(x+iy),x+iy\rangle +i\langle A(x-iy),x-iy\rangle )\end{aligned}}}

and the fact that A x , x = x , A x , {\displaystyle \langle Ax,x\rangle =\langle x,Ax\rangle ,} for positive operators, show that A x , y = x , A y , {\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle ,} so A {\displaystyle A} is symmetric.

In contrast with the complex case, a positive-semidefinite operator on a real Hilbert space H R {\displaystyle H_{\mathbb {R} }} may not be symmetric. As a counterexample, define A : R 2 R 2 {\displaystyle A:\mathbb {R} ^{2}\to \mathbb {R} ^{2}} to be an operator of rotation by an acute angle φ ( π / 2 , π / 2 ) . {\displaystyle \varphi \in (-\pi /2,\pi /2).} Then A x , x = A x x cos φ > 0 , {\displaystyle \langle Ax,x\rangle =\|Ax\|\|x\|\cos \varphi >0,} but A = A 1 A , {\displaystyle A^{*}=A^{-1}\neq A,} so A {\displaystyle A} is not symmetric.

If an operator is non-negative and defined on the whole Hilbert space, then it is self-adjoint and bounded

The symmetry of A {\displaystyle A} implies that Dom A Dom A {\displaystyle \mathop {\text{Dom}} A\subseteq \mathop {\text{Dom}} A^{*}} and A = A | Dom ( A ) . {\displaystyle A=A^{*}|_{\mathop {\text{Dom}} (A)}.} For A {\displaystyle A} to be self-adjoint, it is necessary that Dom A = Dom A . {\displaystyle \mathop {\text{Dom}} A=\mathop {\text{Dom}} A^{*}.} In our case, the equality of domains holds because H C = Dom A Dom A , {\displaystyle H_{\mathbb {C} }=\mathop {\text{Dom}} A\subseteq \mathop {\text{Dom}} A^{*},} so A {\displaystyle A} is indeed self-adjoint. The fact that A {\displaystyle A} is bounded now follows from the Hellinger–Toeplitz theorem.

This property does not hold on H R . {\displaystyle H_{\mathbb {R} }.}

Partial order of self-adjoint operators

A natural partial ordering of self-adjoint operators arises from the definition of positive operators. Define B A {\displaystyle B\geq A} if the following hold:

  1. A {\displaystyle A} and B {\displaystyle B} are self-adjoint
  2. B A 0 {\displaystyle B-A\geq 0}

It can be seen that a similar result as the Monotone convergence theorem holds for monotone increasing, bounded, self-adjoint operators on Hilbert spaces.[2]

Application to physics: quantum states

The definition of a quantum system includes a complex separable Hilbert space H C {\displaystyle H_{\mathbb {C} }} and a set S {\displaystyle {\cal {S}}} of positive trace-class operators ρ {\displaystyle \rho } on H C {\displaystyle H_{\mathbb {C} }} for which Trace ρ = 1. {\displaystyle \mathop {\text{Trace}} \rho =1.} The set S {\displaystyle {\cal {S}}} is the set of states. Every ρ S {\displaystyle \rho \in {\cal {S}}} is called a state or a density operator. For ψ H C , {\displaystyle \psi \in H_{\mathbb {C} },} where ψ = 1 , {\displaystyle \|\psi \|=1,} the operator P ψ {\displaystyle P_{\psi }} of projection onto the span of ψ {\displaystyle \psi } is called a pure state. (Since each pure state is identifiable with a unit vector ψ H C , {\displaystyle \psi \in H_{\mathbb {C} },} some sources define pure states to be unit elements from H C ) . {\displaystyle H_{\mathbb {C} }).} States that are not pure are called mixed.

References

  1. ^ Roman 2008, p. 250 §10
  2. ^ Eidelman, Yuli, Vitali D. Milman, and Antonis Tsolomitis. 2004. Functional analysis: an introduction. Providence (R.I.): American mathematical Society.
  • Conway, John B. (1990), Functional Analysis: An Introduction, Springer Verlag, ISBN 0-387-97245-5