Order bound dual

Mathematical concept

In mathematics, specifically in order theory and functional analysis, the order bound dual of an ordered vector space X {\displaystyle X} is the set of all linear functionals on X {\displaystyle X} that map order intervals, which are sets of the form [ a , b ] := { x X : a x  and  x b } , {\displaystyle [a,b]:=\{x\in X:a\leq x{\text{ and }}x\leq b\},} to bounded sets.[1] The order bound dual of X {\displaystyle X} is denoted by X b . {\displaystyle X^{\operatorname {b} }.} This space plays an important role in the theory of ordered topological vector spaces.

Canonical ordering

An element g {\displaystyle g} of the order bound dual of X {\displaystyle X} is called positive if x 0 {\displaystyle x\geq 0} implies Re ( f ( x ) ) 0. {\displaystyle \operatorname {Re} (f(x))\geq 0.} The positive elements of the order bound dual form a cone that induces an ordering on X b {\displaystyle X^{\operatorname {b} }} called the canonical ordering. If X {\displaystyle X} is an ordered vector space whose positive cone C {\displaystyle C} is generating (meaning X = C C {\displaystyle X=C-C} ) then the order bound dual with the canonical ordering is an ordered vector space.[1]

Properties

The order bound dual of an ordered vector spaces contains its order dual.[1] If the positive cone of an ordered vector space X {\displaystyle X} is generating and if for all positive x {\displaystyle x} and x {\displaystyle x} we have [ 0 , x ] + [ 0 , y ] = [ 0 , x + y ] , {\displaystyle [0,x]+[0,y]=[0,x+y],} then the order dual is equal to the order bound dual, which is an order complete vector lattice under its canonical ordering.[1]

Suppose X {\displaystyle X} is a vector lattice and f {\displaystyle f} and g {\displaystyle g} are order bounded linear forms on X . {\displaystyle X.} Then for all x X , {\displaystyle x\in X,} [1]

  1. sup ( f , g ) ( | x | ) = sup { f ( y ) + g ( z ) : y 0 , z 0 ,  and  y + z = | x | } {\displaystyle \sup(f,g)(|x|)=\sup\{f(y)+g(z):y\geq 0,z\geq 0,{\text{ and }}y+z=|x|\}}
  2. inf ( f , g ) ( | x | ) = inf { f ( y ) + g ( z ) : y 0 , z 0 ,  and  y + z = | x | } {\displaystyle \inf(f,g)(|x|)=\inf\{f(y)+g(z):y\geq 0,z\geq 0,{\text{ and }}y+z=|x|\}}
  3. | f | ( | x | ) = sup { f ( y z ) : y 0 , z 0 ,  and  y + z = | x | } {\displaystyle |f|(|x|)=\sup\{f(y-z):y\geq 0,z\geq 0,{\text{ and }}y+z=|x|\}}
  4. | f ( x ) | | f | ( | x | ) {\displaystyle |f(x)|\leq |f|(|x|)}
  5. if f 0 {\displaystyle f\geq 0} and g 0 {\displaystyle g\geq 0} then f {\displaystyle f} and g {\displaystyle g} are lattice disjoint if and only if for each x 0 {\displaystyle x\geq 0} and real r > 0 , {\displaystyle r>0,} there exists a decomposition x = a + b {\displaystyle x=a+b} with a 0 , b 0 ,  and  f ( a ) + g ( b ) r . {\displaystyle a\geq 0,b\geq 0,{\text{ and }}f(a)+g(b)\leq r.}

See also

  • Algebraic dual space – In mathematics, vector space of linear formsPages displaying short descriptions of redirect targets
  • Continuous dual space – In mathematics, vector space of linear formsPages displaying short descriptions of redirect targets
  • Dual space – In mathematics, vector space of linear forms
  • Order dual (functional analysis)

References

  1. ^ a b c d e Schaefer & Wolff 1999, pp. 204–214.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • v
  • t
  • e
Basic concepts
Types of orders/spacesTypes of elements/subsetsTopologies/Convergence
Operators
Main results
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category