Legendre chi function

Mathematical Function

In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by

χ ν ( z ) = k = 0 z 2 k + 1 ( 2 k + 1 ) ν . {\displaystyle \chi _{\nu }(z)=\sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)^{\nu }}}.}

As such, it resembles the Dirichlet series for the polylogarithm, and, indeed, is trivially expressible in terms of the polylogarithm as

χ ν ( z ) = 1 2 [ Li ν ( z ) Li ν ( z ) ] . {\displaystyle \chi _{\nu }(z)={\frac {1}{2}}\left[\operatorname {Li} _{\nu }(z)-\operatorname {Li} _{\nu }(-z)\right].}

The Legendre chi function appears as the discrete Fourier transform, with respect to the order ν, of the Hurwitz zeta function, and also of the Euler polynomials, with the explicit relationships given in those articles.

The Legendre chi function is a special case of the Lerch transcendent, and is given by

χ ν ( z ) = 2 ν z Φ ( z 2 , ν , 1 / 2 ) . {\displaystyle \chi _{\nu }(z)=2^{-\nu }z\,\Phi (z^{2},\nu ,1/2).}

Identities

χ 2 ( x ) + χ 2 ( 1 / x ) = π 2 4 i π 2 ln | x | . {\displaystyle \chi _{2}(x)+\chi _{2}(1/x)={\frac {\pi ^{2}}{4}}-{\frac {i\pi }{2}}\ln |x|.}
d d x χ 2 ( x ) = a r c t a n h x x . {\displaystyle {\frac {d}{dx}}\chi _{2}(x)={\frac {{\rm {arctanh\,}}x}{x}}.}

Integral relations

0 π / 2 arcsin ( r sin θ ) d θ = χ 2 ( r ) {\displaystyle \int _{0}^{\pi /2}\arcsin(r\sin \theta )d\theta =\chi _{2}\left(r\right)}
0 π / 2 arctan ( r sin θ ) d θ = 1 2 0 π r θ cos θ 1 + r 2 sin 2 θ d θ = 2 χ 2 ( 1 + r 2 1 r ) {\displaystyle \int _{0}^{\pi /2}\arctan(r\sin \theta )d\theta =-{\frac {1}{2}}\int _{0}^{\pi }{\frac {r\theta \cos \theta }{1+r^{2}\sin ^{2}\theta }}d\theta =2\chi _{2}\left({\frac {{\sqrt {1+r^{2}}}-1}{r}}\right)}
0 π / 2 arctan ( p sin θ ) arctan ( q sin θ ) d θ = π χ 2 ( 1 + p 2 1 p 1 + q 2 1 q ) {\displaystyle \int _{0}^{\pi /2}\arctan(p\sin \theta )\arctan(q\sin \theta )d\theta =\pi \chi _{2}\left({\frac {{\sqrt {1+p^{2}}}-1}{p}}\cdot {\frac {{\sqrt {1+q^{2}}}-1}{q}}\right)}
0 α 0 β d x d y 1 x 2 y 2 = χ 2 ( α β ) i f     | α β | 1 {\displaystyle \int _{0}^{\alpha }\int _{0}^{\beta }{\frac {dxdy}{1-x^{2}y^{2}}}=\chi _{2}(\alpha \beta )\qquad {\rm {if}}~~|\alpha \beta |\leq 1}

References

  • Weisstein, Eric W. "Legendre's Chi Function". MathWorld.
  • Djurdje Cvijović, Jacek Klinowski (1999). "Values of the Legendre chi and Hurwitz zeta functions at rational arguments". Mathematics of Computation. 68 (228): 1623–1630. doi:10.1090/S0025-5718-99-01091-1.
  • Djurdje Cvijović (2007). "Integral representations of the Legendre chi function". Journal of Mathematical Analysis and Applications. 332 (2): 1056–1062. arXiv:0911.4731. doi:10.1016/j.jmaa.2006.10.083. S2CID 115155704.
  • v
  • t
  • e