Koornwinder polynomials

In mathematics, Macdonald-Koornwinder polynomials (also called Koornwinder polynomials) are a family of orthogonal polynomials in several variables, introduced by Koornwinder[1] and I. G. Macdonald,[2] that generalize the Askey–Wilson polynomials. They are the Macdonald polynomials attached to the non-reduced affine root system of type (C
n
, Cn), and in particular satisfy analogues of Macdonald's conjectures.[3] In addition Jan Felipe van Diejen showed that the Macdonald polynomials associated to any classical root system can be expressed as limits or special cases of Macdonald-Koornwinder polynomials and found complete sets of concrete commuting difference operators diagonalized by them.[4] Furthermore, there is a large class of interesting families of multivariable orthogonal polynomials associated with classical root systems which are degenerate cases of the Macdonald-Koornwinder polynomials.[5] The Macdonald-Koornwinder polynomials have also been studied with the aid of affine Hecke algebras.[6]

The Macdonald-Koornwinder polynomial in n variables associated to the partition λ is the unique Laurent polynomial invariant under permutation and inversion of variables, with leading monomial xλ, and orthogonal with respect to the density

1 i < j n ( x i x j , x i / x j , x j / x i , 1 / x i x j ; q ) ( t x i x j , t x i / x j , t x j / x i , t / x i x j ; q ) 1 i n ( x i 2 , 1 / x i 2 ; q ) ( a x i , a / x i , b x i , b / x i , c x i , c / x i , d x i , d / x i ; q ) {\displaystyle \prod _{1\leq i<j\leq n}{\frac {(x_{i}x_{j},x_{i}/x_{j},x_{j}/x_{i},1/x_{i}x_{j};q)_{\infty }}{(tx_{i}x_{j},tx_{i}/x_{j},tx_{j}/x_{i},t/x_{i}x_{j};q)_{\infty }}}\prod _{1\leq i\leq n}{\frac {(x_{i}^{2},1/x_{i}^{2};q)_{\infty }}{(ax_{i},a/x_{i},bx_{i},b/x_{i},cx_{i},c/x_{i},dx_{i},d/x_{i};q)_{\infty }}}}

on the unit torus

| x 1 | = | x 2 | = | x n | = 1 {\displaystyle |x_{1}|=|x_{2}|=\cdots |x_{n}|=1} ,

where the parameters satisfy the constraints

| a | , | b | , | c | , | d | , | q | , | t | < 1 , {\displaystyle |a|,|b|,|c|,|d|,|q|,|t|<1,}

and (x;q) denotes the infinite q-Pochhammer symbol. Here leading monomial xλ means that μ≤λ for all terms xμ with nonzero coefficient, where μ≤λ if and only if μ1≤λ1, μ12≤λ12, …, μ1+…+μn≤λ1+…+λn. Under further constraints that q and t are real and that a, b, c, d are real or, if complex, occur in conjugate pairs, the given density is positive.

Citations

  1. ^ Koornwinder 1992.
  2. ^ Macdonald 1987, important special cases[full citation needed]
  3. ^ van Diejen 1996; Sahi 1999; Macdonald 2003, Chapter 5.3.
  4. ^ van Diejen 1995.
  5. ^ van Diejen 1999.
  6. ^ Noumi 1995; Sahi 1999; Macdonald 2003.

References

  • Koornwinder, Tom H. (1992), "Askey-Wilson polynomials for root systems of type BC", Contemporary Mathematics, 138: 189–204, doi:10.1090/conm/138/1199128, MR 1199128, S2CID 14028685
  • van Diejen, Jan F. (1996), "Self-dual Koornwinder-Macdonald polynomials", Inventiones Mathematicae, 126 (2): 319–339, arXiv:q-alg/9507033, Bibcode:1996InMat.126..319V, doi:10.1007/s002220050102, MR 1411136, S2CID 17405644
  • Sahi, S. (1999), "Nonsymmetric Koornwinder polynomials and duality", Annals of Mathematics, Second Series, 150 (1): 267–282, arXiv:q-alg/9710032, doi:10.2307/121102, JSTOR 121102, MR 1715325, S2CID 8958999
  • van Diejen, Jan F. (1995), "Commuting difference operators with polynomial eigenfunctions", Compositio Mathematica, 95: 183–233, arXiv:funct-an/9306002, MR 1313873
  • van Diejen, Jan F. (1999), "Properties of some families of hypergeometric orthogonal polynomials in several variables", Trans. Amer. Math. Soc., 351: 233–70, arXiv:q-alg/9604004, doi:10.1090/S0002-9947-99-02000-0, MR 1433128, S2CID 16214156
  • Noumi, M. (1995), "Macdonald-Koornwinder polynomials and affine Hecke rings", Various Aspects of Hypergeometric Functions, Surikaisekikenkyusho Kokyuroku (in Japanese), vol. 919, pp. 44–55, MR 1388325
  • Macdonald, I. G. (2003), Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge: Cambridge University Press, pp. x+175, ISBN 978-0-521-82472-9, MR 1976581
  • Stokman, Jasper V. (2004), "Lecture notes on Koornwinder polynomials", Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Hauppauge, NY: Nova Science Publishers, pp. 145–207, MR 2085855