Fibered manifold

Concept in differential geometry

In differential geometry, in the category of differentiable manifolds, a fibered manifold is a surjective submersion

π : E B {\displaystyle \pi :E\to B\,}
that is, a surjective differentiable mapping such that at each point y U {\displaystyle y\in U} the tangent mapping
T y π : T y E T π ( y ) B {\displaystyle T_{y}\pi :T_{y}E\to T_{\pi (y)}B}
is surjective, or, equivalently, its rank equals dim B . {\displaystyle \dim B.} [1]

History

In topology, the words fiber (Faser in German) and fiber space (gefaserter Raum) appeared for the first time in a paper by Herbert Seifert in 1932, but his definitions are limited to a very special case.[2] The main difference from the present day conception of a fiber space, however, was that for Seifert what is now called the base space (topological space) of a fiber (topological) space E {\displaystyle E} was not part of the structure, but derived from it as a quotient space of E . {\displaystyle E.} The first definition of fiber space is given by Hassler Whitney in 1935 under the name sphere space, but in 1940 Whitney changed the name to sphere bundle.[3][4]

The theory of fibered spaces, of which vector bundles, principal bundles, topological fibrations and fibered manifolds are a special case, is attributed to Seifert, Hopf, Feldbau, Whitney, Steenrod, Ehresmann, Serre, and others.[5][6][7][8][9]

Formal definition

A triple ( E , π , B ) {\displaystyle (E,\pi ,B)} where E {\displaystyle E} and B {\displaystyle B} are differentiable manifolds and π : E B {\displaystyle \pi :E\to B} is a surjective submersion, is called a fibered manifold.[10] E {\displaystyle E} is called the total space, B {\displaystyle B} is called the base.

Examples

  • Every differentiable fiber bundle is a fibered manifold.
  • Every differentiable covering space is a fibered manifold with discrete fiber.
  • In general, a fibered manifold need not be a fiber bundle: different fibers may have different topologies. An example of this phenomenon may be constructed by taking the trivial bundle ( S 1 × R , π 1 , S 1 ) {\displaystyle \left(S^{1}\times \mathbb {R} ,\pi _{1},S^{1}\right)} and deleting two points in two different fibers over the base manifold S 1 . {\displaystyle S^{1}.} The result is a new fibered manifold where all the fibers except two are connected.

Properties

  • Any surjective submersion π : E B {\displaystyle \pi :E\to B} is open: for each open V E , {\displaystyle V\subseteq E,} the set π ( V ) B {\displaystyle \pi (V)\subseteq B} is open in B . {\displaystyle B.}
  • Each fiber π 1 ( b ) E , b B {\displaystyle \pi ^{-1}(b)\subseteq E,b\in B} is a closed embedded submanifold of E {\displaystyle E} of dimension dim E dim B . {\displaystyle \dim E-\dim B.} [11]
  • A fibered manifold admits local sections: For each y E {\displaystyle y\in E} there is an open neighborhood U {\displaystyle U} of π ( y ) {\displaystyle \pi (y)} in B {\displaystyle B} and a smooth mapping s : U E {\displaystyle s:U\to E} with π s = Id U {\displaystyle \pi \circ s=\operatorname {Id} _{U}} and s ( π ( y ) ) = y . {\displaystyle s(\pi (y))=y.}
  • A surjection π : E B {\displaystyle \pi :E\to B} is a fibered manifold if and only if there exists a local section s : B E {\displaystyle s:B\to E} of π {\displaystyle \pi } (with π s = Id B {\displaystyle \pi \circ s=\operatorname {Id} _{B}} ) passing through each y E . {\displaystyle y\in E.} [12]

Fibered coordinates

Let B {\displaystyle B} (resp. E {\displaystyle E} ) be an n {\displaystyle n} -dimensional (resp. p {\displaystyle p} -dimensional) manifold. A fibered manifold ( E , π , B ) {\displaystyle (E,\pi ,B)} admits fiber charts. We say that a chart ( V , ψ ) {\displaystyle (V,\psi )} on E {\displaystyle E} is a fiber chart, or is adapted to the surjective submersion π : E B {\displaystyle \pi :E\to B} if there exists a chart ( U , φ ) {\displaystyle (U,\varphi )} on B {\displaystyle B} such that U = π ( V ) {\displaystyle U=\pi (V)} and

u 1 = x 1 π , u 2 = x 2 π , , u n = x n π , {\displaystyle u^{1}=x^{1}\circ \pi ,\,u^{2}=x^{2}\circ \pi ,\,\dots ,\,u^{n}=x^{n}\circ \pi \,,}
where
ψ = ( u 1 , , u n , y 1 , , y p n ) . y 0 V , φ = ( x 1 , , x n ) , π ( y 0 ) U . {\displaystyle {\begin{aligned}\psi &=\left(u^{1},\dots ,u^{n},y^{1},\dots ,y^{p-n}\right).\quad y_{0}\in V,\\\varphi &=\left(x^{1},\dots ,x^{n}\right),\quad \pi \left(y_{0}\right)\in U.\end{aligned}}}

The above fiber chart condition may be equivalently expressed by

φ π = p r 1 ψ , {\displaystyle \varphi \circ \pi =\mathrm {pr} _{1}\circ \psi ,}
where
p r 1 : R n × R p n R n {\displaystyle {\mathrm {pr} _{1}}:{\mathbb {R} ^{n}}\times {\mathbb {R} ^{p-n}}\to {\mathbb {R} ^{n}}\,}
is the projection onto the first n {\displaystyle n} coordinates. The chart ( U , φ ) {\displaystyle (U,\varphi )} is then obviously unique. In view of the above property, the fibered coordinates of a fiber chart ( V , ψ ) {\displaystyle (V,\psi )} are usually denoted by ψ = ( x i , y σ ) {\displaystyle \psi =\left(x^{i},y^{\sigma }\right)} where i { 1 , , n } , {\displaystyle i\in \{1,\ldots ,n\},} σ { 1 , , m } , {\displaystyle \sigma \in \{1,\ldots ,m\},} m = p n {\displaystyle m=p-n} the coordinates of the corresponding chart ( U , φ ) {\displaystyle (U,\varphi )} on B {\displaystyle B} are then denoted, with the obvious convention, by φ = ( x i ) {\displaystyle \varphi =\left(x_{i}\right)} where i { 1 , , n } . {\displaystyle i\in \{1,\ldots ,n\}.}

Conversely, if a surjection π : E B {\displaystyle \pi :E\to B} admits a fibered atlas, then π : E B {\displaystyle \pi :E\to B} is a fibered manifold.

Local trivialization and fiber bundles

Let E B {\displaystyle E\to B} be a fibered manifold and V {\displaystyle V} any manifold. Then an open covering { U α } {\displaystyle \left\{U_{\alpha }\right\}} of B {\displaystyle B} together with maps

ψ : π 1 ( U α ) U α × V , {\displaystyle \psi :\pi ^{-1}\left(U_{\alpha }\right)\to U_{\alpha }\times V,}
called trivialization maps, such that
p r 1 ψ α = π ,  for all  α {\displaystyle \mathrm {pr} _{1}\circ \psi _{\alpha }=\pi ,{\text{ for all }}\alpha }
is a local trivialization with respect to V . {\displaystyle V.} [13]

A fibered manifold together with a manifold V {\displaystyle V} is a fiber bundle with typical fiber (or just fiber) V {\displaystyle V} if it admits a local trivialization with respect to V . {\displaystyle V.} The atlas Ψ = { ( U α , ψ α ) } {\displaystyle \Psi =\left\{\left(U_{\alpha },\psi _{\alpha }\right)\right\}} is then called a bundle atlas.

See also

Notes

References

  • Kolář, Ivan; Michor, Peter; Slovák, Jan (1993), Natural operators in differential geometry (PDF), Springer-Verlag, archived from the original (PDF) on March 30, 2017, retrieved June 15, 2011
  • Krupka, Demeter; Janyška, Josef (1990), Lectures on differential invariants, Univerzita J. E. Purkyně V Brně, ISBN 80-210-0165-8
  • Saunders, D.J. (1989), The geometry of jet bundles, Cambridge University Press, ISBN 0-521-36948-7
  • Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (1997). New Lagrangian and Hamiltonian Methods in Field Theory. World Scientific. ISBN 981-02-1587-8.

Historical

  • Ehresmann, C. (1947a). "Sur la théorie des espaces fibrés". Coll. Top. Alg. Paris (in French). C.N.R.S.: 3–15.
  • Ehresmann, C. (1947b). "Sur les espaces fibrés différentiables". C. R. Acad. Sci. Paris (in French). 224: 1611–1612.
  • Ehresmann, C. (1955). "Les prolongements d'un espace fibré différentiable". C. R. Acad. Sci. Paris (in French). 240: 1755–1757.
  • Feldbau, J. (1939). "Sur la classification des espaces fibrés". C. R. Acad. Sci. Paris (in French). 208: 1621–1623.
  • Seifert, H. (1932). "Topologie dreidimensionaler geschlossener Räume". Acta Math. (in French). 60: 147–238. doi:10.1007/bf02398271.
  • Serre, J.-P. (1951). "Homologie singulière des espaces fibrés. Applications". Ann. of Math. (in French). 54: 425–505. doi:10.2307/1969485. JSTOR 1969485.
  • Whitney, H. (1935). "Sphere spaces". Proc. Natl. Acad. Sci. USA. 21 (7): 464–468. Bibcode:1935PNAS...21..464W. doi:10.1073/pnas.21.7.464. PMC 1076627. PMID 16588001. Open access icon
  • Whitney, H. (1940). "On the theory of sphere bundles". Proc. Natl. Acad. Sci. USA. 26 (2): 148–153. Bibcode:1940PNAS...26..148W. doi:10.1073/pnas.26.2.148. MR 0001338. PMC 1078023. PMID 16588328. Open access icon

External links

  • McCleary, J. "A History of Manifolds and Fibre Spaces: Tortoises and Hares" (PDF).
  • v
  • t
  • e
Basic conceptsMain results (list)Maps
Types of
manifoldsTensors
Vectors
Covectors
Bundles
Connections
RelatedGeneralizations