E-graph

Graph data structure

In computer science, an e-graph is a data structure that stores an equivalence relation over terms of some language.

Definition and operations

Let Σ {\displaystyle \Sigma } be a set of uninterpreted functions, where Σ n {\displaystyle \Sigma _{n}} is the subset of Σ {\displaystyle \Sigma } consisting of functions of arity n {\displaystyle n} . Let i d {\displaystyle \mathbb {id} } be a countable set of opaque identifiers that may be compared for equality, called e-class IDs. The application of f Σ n {\displaystyle f\in \Sigma _{n}} to e-class IDs i 1 , i 2 , , i n i d {\displaystyle i_{1},i_{2},\ldots ,i_{n}\in \mathbb {id} } is denoted f ( i 1 , i 2 , , i n ) {\displaystyle f(i_{1},i_{2},\ldots ,i_{n})} and called an e-node.

The e-graph then represents equivalence classes of e-nodes, using the following data structures:[1]

  • A union-find structure U {\displaystyle U} representing equivalence classes of e-class IDs, with the usual operations f i n d {\displaystyle \mathrm {find} } , a d d {\displaystyle \mathrm {add} } and m e r g e {\displaystyle \mathrm {merge} } . An e-class ID e {\displaystyle e} is canonical if f i n d ( U , e ) = e {\displaystyle \mathrm {find} (U,e)=e} ; an e-node f ( i 1 , , i n ) {\displaystyle f(i_{1},\ldots ,i_{n})} is canonical if each i j {\displaystyle i_{j}} is canonical ( j {\displaystyle j} in 1 , , n {\displaystyle 1,\ldots ,n} ).
  • An association of e-class IDs with sets of e-nodes, called e-classes. This consists of
    • a hashcons H {\displaystyle H} (i.e. a mapping) from canonical e-nodes to e-class IDs, and
    • an e-class map M {\displaystyle M} that maps e-class IDs to e-classes, such that M {\displaystyle M} maps equivalent IDs to the same set of e-nodes: i , j i d , M [ i ] = M [ j ] f i n d ( U , i ) = f i n d ( U , j ) {\displaystyle \forall i,j\in \mathbb {id} ,M[i]=M[j]\Leftrightarrow \mathrm {find} (U,i)=\mathrm {find} (U,j)}

Invariants

In addition to the above structure, a valid e-graph conforms to several data structure invariants.[2] Two e-nodes are equivalent if they are in the same e-class. The congruence invariant states that an e-graph must ensure that equivalence is closed under congruence, where two e-nodes f ( i 1 , , i n ) , f ( j 1 , , j n ) {\displaystyle f(i_{1},\ldots ,i_{n}),f(j_{1},\ldots ,j_{n})} are congruent when f i n d ( U , i k ) = f i n d ( U , j k ) , k { 1 , , n } {\displaystyle \mathrm {find} (U,i_{k})=\mathrm {find} (U,j_{k}),k\in \{1,\ldots ,n\}} . The hashcons invariant states that the hashcons maps canonical e-nodes to their e-class ID.

Operations

E-graphs expose wrappers around the a d d {\displaystyle \mathrm {add} } , f i n d {\displaystyle \mathrm {find} } , and m e r g e {\displaystyle \mathrm {merge} } operations from the union-find that preserve the e-graph invariants. The last operation, e-matching, is described below.

E-matching

Let V {\displaystyle V} be a set of variables and let T e r m ( Σ , V ) {\displaystyle \mathrm {Term} (\Sigma ,V)} be the smallest set that includes the 0-arity function symbols (also called constants), includes the variables, and is closed under application of the function symbols. In other words, T e r m ( Σ , V ) {\displaystyle \mathrm {Term} (\Sigma ,V)} is the smallest set such that V T e r m ( V , Σ ) {\displaystyle V\subset \mathrm {Term} (V,\Sigma )} , Σ 0 T e r m ( Σ , V ) {\displaystyle \Sigma _{0}\subset \mathrm {Term} (\Sigma ,V)} , and when x 1 , , x n T e r m ( Σ , V ) {\displaystyle x_{1},\ldots ,x_{n}\in \mathrm {Term} (\Sigma ,V)} and f Σ n {\displaystyle f\in \Sigma _{n}} , then f ( x 1 , , x n ) T e r m ( Σ , V ) {\displaystyle f(x_{1},\ldots ,x_{n})\in \mathrm {Term} (\Sigma ,V)} . A term containing variables is called a pattern, a term without variables is called ground.

An e-graph E {\displaystyle E} represents a ground term t T e r m ( Σ , ) {\displaystyle t\in \mathrm {Term} (\Sigma ,\emptyset )} if one of its e-classes represents t {\displaystyle t} . An e-class C {\displaystyle C} represents t {\displaystyle t} if some e-node f ( i 1 , , i n ) C {\displaystyle f(i_{1},\ldots ,i_{n})\in C} does. An e-node f ( i 1 , , i n ) C {\displaystyle f(i_{1},\ldots ,i_{n})\in C} represents a term g ( j 1 , , j n ) {\displaystyle g(j_{1},\ldots ,j_{n})} if f = g {\displaystyle f=g} and each e-class M [ i k ] {\displaystyle M[i_{k}]} represents the term j k {\displaystyle j_{k}} ( k {\displaystyle k} in 1 , , n {\displaystyle 1,\ldots ,n} ).

e-matching is an operation that takes a pattern p T e r m ( Σ , V ) {\displaystyle p\in \mathrm {Term} (\Sigma ,V)} and an e-graph E {\displaystyle E} , and yields all pairs ( σ , C ) {\displaystyle (\sigma ,C)} where σ V × i d {\displaystyle \sigma \subset V\times \mathbb {id} } is a substitution mapping the variables in p {\displaystyle p} to e-class IDs and C i d {\displaystyle C\in \mathbb {id} } is an e-class ID such that each term σ ( p ) {\displaystyle \sigma (p)} is represented by C {\displaystyle C} . There are several known algorithms for e-matching,[3][4] the relational e-matching algorithm is based on worst-case optimal joins and is worst-case optimal.[5]

Complexity

  • An e-graph with n equalities can be constructed in O(n log n) time.[6]

Equality saturation

Equality saturation is a technique for building optimizing compilers using e-graphs.[7] It operates by applying a set of rewrites using e-matching until the e-graph is saturated, a timeout is reached, an e-graph size limit is reached, a fixed number of iterations is exceeded, or some other halting condition is reached. After rewriting, an optimal term is extracted from the e-graph according to some cost function, usually related to AST size or performance considerations.

Applications

E-graphs are used in automated theorem proving. They are a crucial part of modern SMT solvers such as Z3[8] and CVC4, where they are used to decide the empty theory by computing the congruence closure of a set of equalities, and e-matching is used to instantiate quantifiers.[9] In DPLL(T)-based solvers that use conflict-driven clause learning (also known as non-chronological backtracking), e-graphs are extended to produce proof certificates.[10] E-graphs are also used in the Simplify theorem prover of ESC/Java.[11]

Equality saturation is used in specialized optimizing compilers,[12] e.g. for deep learning[13] and linear algebra.[14] Equality saturation has also been used for translation validation applied to the LLVM toolchain.[15]

E-graphs have been applied to several problems in program analysis, including fuzzing,[16] abstract interpretation,[17][18] and library learning.[19]

References

  1. ^ (Willsey et al. 2021)
  2. ^ (Willsey et al. 2021)
  3. ^ (de Moura & Bjørner 2007)
  4. ^ Moskal, Michał; Łopuszański, Jakub; Kiniry, Joseph R. (2008-05-06). "E-matching for Fun and Profit". Electronic Notes in Theoretical Computer Science. Proceedings of the 5th International Workshop on Satisfiability Modulo Theories (SMT 2007). 198 (2): 19–35. doi:10.1016/j.entcs.2008.04.078. ISSN 1571-0661.
  5. ^ Zhang, Yihong; Wang, Yisu Remy; Willsey, Max; Tatlock, Zachary (2022-01-12). "Relational e-matching". Proceedings of the ACM on Programming Languages. 6 (POPL): 35:1–35:22. doi:10.1145/3498696. S2CID 236924583.
  6. ^ (Flatt et al. 2022, p. 2)
  7. ^ (Tate et al. 2009)
  8. ^ de Moura, Leonardo; Bjørner, Nikolaj (2008). "Z3: An Efficient SMT Solver". In Ramakrishnan, C. R.; Rehof, Jakob (eds.). Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science. Vol. 4963. Berlin, Heidelberg: Springer. pp. 337–340. doi:10.1007/978-3-540-78800-3_24. ISBN 978-3-540-78800-3.
  9. ^ Rümmer, Philipp (2012). "E-Matching with Free Variables". In Bjørner, Nikolaj; Voronkov, Andrei (eds.). Lecture Notes in Computer Science. Vol. 7180. Berlin, Heidelberg: Springer. pp. 359–374. doi:10.1007/978-3-642-28717-6_28. ISBN 978-3-642-28717-6. {{cite book}}: |journal= ignored (help); Missing or empty |title= (help)
  10. ^ (Flatt et al. 2022, p. 2)
  11. ^ Detlefs, David; Nelson, Greg; Saxe, James B. (2005-05-01). "Simplify: a theorem prover for program checking". Journal of the ACM. 52 (3): 365–473. doi:10.1145/1066100.1066102. ISSN 0004-5411. S2CID 9613854.
  12. ^ Joshi, Rajeev; Nelson, Greg; Randall, Keith (2002-05-17). "Denali: a goal-directed superoptimizer". ACM SIGPLAN Notices. 37 (5): 304–314. doi:10.1145/543552.512566. ISSN 0362-1340.
  13. ^ Yang, Yichen; Phothilimtha, Phitchaya Mangpo; Wang, Yisu Remy; Willsey, Max; Roy, Sudip; Pienaar, Jacques (2021-03-17). "Equality Saturation for Tensor Graph Superoptimization". arXiv:2101.01332 [cs.AI].
  14. ^ Wang, Yisu Remy; Hutchison, Shana; Leang, Jonathan; Howe, Bill; Suciu, Dan (2020-12-22). "SPORES: Sum-Product Optimization via Relational Equality Saturation for Large Scale Linear Algebra". arXiv:2002.07951 [cs.DB].
  15. ^ Stepp, Michael; Tate, Ross; Lerner, Sorin (2011). "Equality-Based Translation Validator for LLVM". In Gopalakrishnan, Ganesh; Qadeer, Shaz (eds.). Computer Aided Verification. Lecture Notes in Computer Science. Vol. 6806. Berlin, Heidelberg: Springer. pp. 737–742. doi:10.1007/978-3-642-22110-1_59. ISBN 978-3-642-22110-1.
  16. ^ "Wasm-mutate: Fuzzing WebAssembly Compilers with E-Graphs (EGRAPHS 2022) - PLDI 2022". pldi22.sigplan.org. Retrieved 2023-02-03.
  17. ^ Coward, Samuel; Constantinides, George A.; Drane, Theo (2022-03-17). "Abstract Interpretation on E-Graphs". arXiv:2203.09191. {{cite journal}}: Cite journal requires |journal= (help)
  18. ^ Coward, Samuel; Constantinides, George A.; Drane, Theo (2022-05-30). "Combining E-Graphs with Abstract Interpretation". arXiv:2205.14989. {{cite journal}}: Cite journal requires |journal= (help)
  19. ^ Cao, David; Kunkel, Rose; Nandi, Chandrakana; Willsey, Max; Tatlock, Zachary; Polikarpova, Nadia (2023-01-09). "babble: Learning Better Abstractions with E-Graphs and Anti-Unification". Proceedings of the ACM on Programming Languages. 7 (POPL): 396–424. arXiv:2212.04596. doi:10.1145/3571207. ISSN 2475-1421. S2CID 254536022.
  • de Moura, Leonardo; Bjørner, Nikolaj (2007). "Efficient E-Matching for SMT Solvers". In Pfenning, Frank (ed.). Automated Deduction – CADE-21. Lecture Notes in Computer Science. Vol. 4603. Berlin, Heidelberg: Springer. pp. 183–198. doi:10.1007/978-3-540-73595-3_13. ISBN 978-3-540-73595-3.
  • Willsey, Max; Nandi, Chandrakana; Wang, Yisu Remy; Flatt, Oliver; Tatlock, Zachary; Panchekha, Pavel (2021-01-04). "egg: Fast and extensible equality saturation". Proceedings of the ACM on Programming Languages. 5 (POPL): 23:1–23:29. arXiv:2004.03082. doi:10.1145/3434304. S2CID 226282597.
  • Tate, Ross; Stepp, Michael; Tatlock, Zachary; Lerner, Sorin (2009-01-21). "Equality saturation". Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. POPL '09. Savannah, GA, USA: Association for Computing Machinery. pp. 264–276. doi:10.1145/1480881.1480915. ISBN 978-1-60558-379-2. S2CID 2138086.
  • Flatt, Oliver; Coward, Samuel; Willsey, Max; Tatlock, Zachary; Panchekha, Pavel (October 2022). "Small Proofs from Congruence Closure". In A. Griggio; N. Rungta (eds.). Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022. TU Wien Academic Press. pp. 75–83. doi:10.34727/2022/isbn.978-3-85448-053-2_13. ISBN 978-3-85448-053-2. S2CID 252118847.

External links

  • The Egg Project
  • A Colab notebook explaining e-graphs
  • v
  • t
  • e
Key concepts
A simple control-flow graph
Semantics
Types
Models
Analyses
Static
Dynamic
Formal methods
Concepts
Logics
Data structures
Tools
Constraint solvers
Lightweight
Proof assistants
  • Category
  • Outline
  • Glossary