Diphosphorus tetraiodide

Diphosphorus tetraiodide
Ball-and-stick model of the diphosphorus tetraiodide molecule
Names
IUPAC name
Diphosphorus tetraiodide
Preferred IUPAC name
Tetraiododiphosphane
Other names
Phosphorus(II) iodide
Identifiers
CAS Number
  • 13455-00-0 checkY
3D model (JSmol)
  • Interactive image
ChemSpider
  • 75322
ECHA InfoCard 100.033.301 Edit this at Wikidata
EC Number
  • 236-646-7
PubChem CID
  • 83484
CompTox Dashboard (EPA)
  • DTXSID6065474 Edit this at Wikidata
InChI
  • InChI=1S/I4P2/c1-5(2)6(3)4
    Key: YXXQTQYRRHHWFL-UHFFFAOYSA-N
  • P(P(I)I)(I)I
Properties
Chemical formula
P2I4
Molar mass 569.57 g/mol
Appearance Orange crystalline solid
Melting point 125.5 °C (257.9 °F; 398.6 K)
Boiling point Decomposes
Solubility in water
Decomposes
Hazards
GHS labelling:
Pictograms
GHS05: Corrosive
Danger
Hazard statements
H314
Precautionary statements
P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501
Flash point Non-flammable
Related compounds
Other anions
Diphosphorus tetrafluoride
Diphosphorus tetrachloride
Diphosphorus tetrabromide
Other cations
diarsenic tetraiodide
Related Binary Phosphorus halides
phosphorus triiodide
Related compounds
diphosphane
diphosphines
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references
Chemical compound

Diphosphorus tetraiodide is an orange crystalline solid with the formula P2I4. It has been used as a reducing agent in organic chemistry. It is a rare example of a compound with phosphorus in the +2 oxidation state, and can be classified as a subhalide of phosphorus. It is the most stable of the diphosphorus tetrahalides.[1]

Synthesis and structure

Diphosphorus tetraiodide is easily generated by the disproportionation of phosphorus triiodide in dry ether:

2 PI3 → P2I4 + I2

It can also be obtained by treating phosphorus trichloride and potassium iodide in anhydrous conditions.[2]

Another synthesis route involves combining phosphonium iodide with iodine in a solution of carbon disulfide. An advantage of this route is that the resulting product is virtually free of impurities.[3]

2PH4I + 5I2 → P2I4 + 8HI

The compound adopts a centrosymmetric structure with a P-P bond of 2.230 Å.[4]

Reactions

Inorganic chemistry

Diphosphorus tetraiodide reacts with bromine to form mixtures PI3−xBrx. With sulfur, it is oxidized to P2S2I4, retaining the P-P bond.[1] It reacts with elemental phosphorus and water to make phosphonium iodide, which is collected via sublimation at 80 °C.[3]

Organic chemistry

Diphosphorus tetraiodide is used in organic synthesis mainly as a deoxygenating agent.[5] It is used for deprotecting acetals and ketals to aldehydes and ketones, and for converting epoxides into alkenes and aldoximes into nitriles. It can also cyclize 2-aminoalcohols to aziridines[6] and to convert α,β-unsaturated carboxylic acids to α,β-unsaturated bromides.[7]

As foreshadowed by the work of Bertholet in 1855, diphosphorus tetraiodide can convert glycols to trans alkenes.[5][8] This reaction is known as the Kuhn–Winterstein reaction, after the chemists who applied it to the production of polyene chromophores.[5][9]

References

  1. ^ a b Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  2. ^ H. Suzuki; T. Fuchita; A. Iwasa; T. Mishina (December 1978). "Diphosphorus Tetraiodide as a Reagent for Converting Epoxides into Olefins, and Aldoximes into Nitriles under Mild Conditions". Synthesis. 1978 (12): 905–908. doi:10.1055/s-1978-24936.
  3. ^ a b Brown, Glenn Halstead (1951). Reactions of phosphine and phosphonium iodide (PhD). Iowa State College. Retrieved 5 Oct 2020.
  4. ^ Z. Žák; M. Černík (1996). "Diphosphorus tetraiodide at 120 K". Acta Crystallographica Section C. C52 (2): 290–291. doi:10.1107/S0108270195012510.
  5. ^ a b c Krief, Alain; Telvekar, Vikas N. (2009). "Diphosphorus Tetraiodide". Diphosphorus Tetraiodide. Encyclopedia for Reagents in Organic Synthesis 2009. doi:10.1002/047084289X.rd448.pub2. ISBN 978-0471936237.
  6. ^ H. Suzuki; H. Tani (1984). "A mild cyclization of 2-aminoalcohols to aziridines using diphosphorus tetraiodide". Chemistry Letters. 13 (12): 2129–2130. doi:10.1246/cl.1984.2129.
  7. ^ Vikas N. Telvekar; Somsundaram N. Chettiar (June 2007). "A novel system for decarboxylative bromination". Tetrahedron Letters. 48 (26): 4529–4532. doi:10.1016/j.tetlet.2007.04.137.
  8. ^ Kuhn, Richard; Winterstein, Alfred (1928). "Über konjugierte Doppelbindungen I. Synthese von Diphenyl-poly-enen" [Conjugated double-bonds I: Synthesis of diphenyl-polyenes]. Helvetica Chimica Acta (in German). 11 (1): 87–116. doi:10.1002/hlca.19280110107.
  9. ^ Inhoffen, H. H.; Radscheit, K.; Stache, U.; Koppe, V. (1965). "Untersuchungen an hochsubstituierten äthylenen und Glykolen, II. Synthese des 3.4-Bis-[4-oxo-cyclohexyl]-hexens-(3) mit Hilfe der Kuhn-Winterstein-Reaktion" [Experiments on highly-substituted ethenes and glycols II: Synthesis of 3,4-bis-[4-oxo-cyclohexyl]-3-hexane via the Kuhn-Winterstein reaction]. Justus Liebigs Ann. Chem. (in German) (684): 24–36. doi:10.1002/jlac.19656840106.
  • v
  • t
  • e
Salts and covalent derivatives of the iodide ion
HI
+H
He
LiI BeI2 BI3
+BO3
CI4
+C
NI3
NH4I
+N
I2O4
I2O5
I4O9
IF
IF3
IF5
IF7
Ne
NaI MgI2 AlI
AlI3
SiI4 PI3
P2I4
+P
PI5
S2I2 ICl
ICl3
Ar
KI CaI2 ScI3 TiI2
TiI3
TiI4
VI2
VI3
CrI2
CrI3
MnI2 FeI2
FeI3
CoI2 NiI2
-Ni
CuI ZnI2 GaI
GaI3
GeI2
GeI4
+Ge
AsI3
As2I4
+As
Se IBr
IBr3
Kr
RbI
RbI3
SrI2 YI3 ZrI2
ZrI3
ZrI4
NbI4
NbI5
MoI2
MoI3
TcI3 RuI3 RhI3 PdI2 AgI CdI2 InI
InI3
SnI2
SnI4
SbI3
+Sb
TeI4
+Te
I
I
3
Xe
CsI
CsI3
BaI2   LuI3 HfI3
HfI4
TaI4
TaI5
WI2
WI3
WI4
ReI3
ReI
4
OsI
OsI2
OsI3
IrI3
IrI
4
PtI2
PtI4
AuI
AuI3
Hg2I2
HgI2
TlI
TlI3
PbI2 BiI3 PoI2
PoI4
AtI Rn
Fr RaI2   Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaI2
LaI3
CeI2
CeI3
PrI2
PrI3
NdI2
NdI3
PmI3 SmI2
SmI3
EuI2
EuI3
GdI2
GdI3
TbI3 DyI2
DyI
3
HoI3 ErI3 TmI2
TmI3
YbI2
YbI3
AcI3 ThI2
ThI3
ThI4
PaI4
PaI5
UI3
UI4
NpI3 PuI3 AmI2
AmI3
CmI3 BkI
3
CfI
2

CfI
3
EsI2
EsI3
Fm Md No