Alexander's theorem

Every knot or link can be represented as a closed braid
This is a typical element of the braid group, which is used in the mathematical field of knot theory.

In mathematics Alexander's theorem states that every knot or link can be represented as a closed braid; that is, a braid in which the corresponding ends of the strings are connected in pairs. The theorem is named after James Waddell Alexander II, who published a proof in 1923.[1]

Braids were first considered as a tool of knot theory by Alexander. His theorem gives a positive answer to the question Is it always possible to transform a given knot into a closed braid? A good construction example is found in Colin Adams's book.[2]

However, the correspondence between knots and braids is clearly not one-to-one: a knot may have many braid representations. For example, conjugate braids yield equivalent knots. This leads to a second fundamental question: Which closed braids represent the same knot type? This question is addressed in Markov's theorem, which gives ‘moves’ relating any two closed braids that represent the same knot.

References

  1. ^ Alexander, James (1923). "A lemma on a system of knotted curves". Proceedings of the National Academy of Sciences of the United States of America. 9 (3): 93–95. Bibcode:1923PNAS....9...93A. doi:10.1073/pnas.9.3.93. PMC 1085274. PMID 16576674.
  2. ^ Adams, Colin C. (2004). The Knot Book. Revised reprint of the 1994 original. Providence, RI: American Mathematical Society. p. 130. ISBN 0-8218-3678-1. MR 2079925.
  • Sossinsky, Alexei B. (2002). Knots: Mathematics with a Twist. Cambridge, MA: Harvard University Press. p. 17. ISBN 9780674009448. MR 1941191.
  • v
  • t
  • e
Knot theory (knots and links)
Hyperbolic
  • Figure-eight (41)
  • Three-twist (52)
  • Stevedore (61)
  • 62
  • 63
  • Endless (74)
  • Carrick mat (818)
  • Perko pair (10161)
  • Conway knot (11n34)
  • Kinoshita–Terasaka knot (11n42)
  • (−2,3,7) pretzel (12n242)
  • Whitehead (52
    1
    )
  • Borromean rings (63
    2
    )
  • L10a140
Satellite
Torus
InvariantsNotation
and operationsOther
  • Category
  • Commons
Stub icon

This knot theory-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e