Primitives de funcions trigonomètriques

Tot seguit es presenta una llista de les primitives (o integrals) de funcions trigonomètriques. Per a consultar les integrals que impliquen funcions exponencials i trigonomètriques, veure Llista d'integrals de funcions exponencials. Per a consultar una llista completa de primitives de tota mena de funcions adreceu-vos a taula d'integrals

En totes les fórmules, la constant a se suposa diferent de zero i C indica la constant d'integració.

Integrals de funcions trigonomètriques que inclouen només el sinus

sin a x d x = 1 a cos a x + C {\displaystyle \int \sin ax\;dx=-{\frac {1}{a}}\cos ax+C\,\!}
sin 2 a x d x = x 2 1 4 a sin 2 a x + C = x 2 1 2 a sin a x cos a x + C {\displaystyle \int \sin ^{2}{ax}\;dx={\frac {x}{2}}-{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}-{\frac {1}{2a}}\sin ax\cos ax+C\!}
sin a 1 x sin a 2 x d x = sin [ ( a 1 a 2 ) x ] 2 ( a 1 a 2 ) sin [ ( a 1 + a 2 ) x ] 2 ( a 1 + a 2 ) + C (per  | a 1 | | a 2 | ) {\displaystyle \int \sin a_{1}x\sin a_{2}x\;dx={\frac {\sin[(a_{1}-a_{2})x]}{2(a_{1}-a_{2})}}-{\frac {\sin[(a_{1}+a_{2})x]}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(per }}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}
sin n a x d x = sin n 1 a x cos a x n a + n 1 n sin n 2 a x d x (per  n > 0 ) {\displaystyle \int \sin ^{n}{ax}\;dx=-{\frac {\sin ^{n-1}ax\cos ax}{na}}+{\frac {n-1}{n}}\int \sin ^{n-2}ax\;dx\qquad {\mbox{(per }}n>0{\mbox{)}}\,\!}
d x sin a x = 1 a ln | tan a x 2 | + C {\displaystyle \int {\frac {dx}{\sin ax}}={\frac {1}{a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
d x sin n a x = cos a x a ( 1 n ) sin n 1 a x + n 2 n 1 d x sin n 2 a x (per  n > 1 ) {\displaystyle \int {\frac {dx}{\sin ^{n}ax}}={\frac {\cos ax}{a(1-n)\sin ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}ax}}\qquad {\mbox{(per }}n>1{\mbox{)}}\,\!}
x sin a x d x = sin a x a 2 x cos a x a + C {\displaystyle \int x\sin ax\;dx={\frac {\sin ax}{a^{2}}}-{\frac {x\cos ax}{a}}+C\,\!}
x n sin a x d x = x n a cos a x + n a x n 1 cos a x d x (per  n > 0 ) {\displaystyle \int x^{n}\sin ax\;dx=-{\frac {x^{n}}{a}}\cos ax+{\frac {n}{a}}\int x^{n-1}\cos ax\;dx\qquad {\mbox{(per }}n>0{\mbox{)}}\,\!}
a 2 a 2 x 2 sin 2 n π x a d x = a 3 ( n 2 π 2 6 ) 24 n 2 π 2 (per  n = 2 , 4 , 6... ) {\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(per }}n=2,4,6...{\mbox{)}}\,\!}
sin a x x d x = n = 0 ( 1 ) n ( a x ) 2 n + 1 ( 2 n + 1 ) ( 2 n + 1 ) ! + C {\displaystyle \int {\frac {\sin ax}{x}}dx=\sum _{n=0}^{\infty }(-1)^{n}{\frac {(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!}}+C\,\!}
sin a x x n d x = sin a x ( n 1 ) x n 1 + a n 1 cos a x x n 1 d x {\displaystyle \int {\frac {\sin ax}{x^{n}}}dx=-{\frac {\sin ax}{(n-1)x^{n-1}}}+{\frac {a}{n-1}}\int {\frac {\cos ax}{x^{n-1}}}dx\,\!}
d x 1 ± sin a x = 1 a tan ( a x 2 π 4 ) + C {\displaystyle \int {\frac {dx}{1\pm \sin ax}}={\frac {1}{a}}\tan \left({\frac {ax}{2}}\mp {\frac {\pi }{4}}\right)+C}
x d x 1 + sin a x = x a tan ( a x 2 π 4 ) + 2 a 2 ln | cos ( a x 2 π 4 ) | + C {\displaystyle \int {\frac {x\;dx}{1+\sin ax}}={\frac {x}{a}}\tan \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{a^{2}}}\ln \left|\cos \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)\right|+C}
x d x 1 sin a x = x a cot ( π 4 a x 2 ) + 2 a 2 ln | sin ( π 4 a x 2 ) | + C {\displaystyle \int {\frac {x\;dx}{1-\sin ax}}={\frac {x}{a}}\cot \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)+{\frac {2}{a^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)\right|+C}
sin a x d x 1 ± sin a x = ± x + 1 a tan ( π 4 a x 2 ) + C {\displaystyle \int {\frac {\sin ax\;dx}{1\pm \sin ax}}=\pm x+{\frac {1}{a}}\tan \left({\frac {\pi }{4}}\mp {\frac {ax}{2}}\right)+C}

Integrals de funcions trigonomètriques que inclouen només el cosinus

cos a x d x = 1 a sin a x + C {\displaystyle \int \cos ax\;dx={\frac {1}{a}}\sin ax+C\,\!}
cos n a x d x = cos n 1 a x sin a x n a + n 1 n cos n 2 a x d x (per  n > 0 ) {\displaystyle \int \cos ^{n}ax\;dx={\frac {\cos ^{n-1}ax\sin ax}{na}}+{\frac {n-1}{n}}\int \cos ^{n-2}ax\;dx\qquad {\mbox{(per }}n>0{\mbox{)}}\,\!}
x cos a x d x = cos a x a 2 + x sin a x a + C {\displaystyle \int x\cos ax\;dx={\frac {\cos ax}{a^{2}}}+{\frac {x\sin ax}{a}}+C\,\!}
cos 2 a x d x = x 2 + 1 4 a sin 2 a x + C = x 2 + 1 2 a sin a x cos a x + C {\displaystyle \int \cos ^{2}{ax}\;dx={\frac {x}{2}}+{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}+{\frac {1}{2a}}\sin ax\cos ax+C\!}
x n cos a x d x = x n sin a x a n a x n 1 sin a x d x {\displaystyle \int x^{n}\cos ax\;dx={\frac {x^{n}\sin ax}{a}}-{\frac {n}{a}}\int x^{n-1}\sin ax\;dx\,\!}
a 2 a 2 x 2 cos 2 n π x a d x = a 3 ( n 2 π 2 6 ) 24 n 2 π 2 (per  n = 1 , 3 , 5... ) {\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(per }}n=1,3,5...{\mbox{)}}\,\!}
cos a x x d x = ln | a x | + k = 1 ( 1 ) k ( a x ) 2 k 2 k ( 2 k ) ! + C {\displaystyle \int {\frac {\cos ax}{x}}dx=\ln |ax|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(ax)^{2k}}{2k\cdot (2k)!}}+C\,\!}
cos a x x n d x = cos a x ( n 1 ) x n 1 a n 1 sin a x x n 1 d x (per  n 1 ) {\displaystyle \int {\frac {\cos ax}{x^{n}}}dx=-{\frac {\cos ax}{(n-1)x^{n-1}}}-{\frac {a}{n-1}}\int {\frac {\sin ax}{x^{n-1}}}dx\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}
d x cos a x = 1 a ln | tan ( a x 2 + π 4 ) | + C {\displaystyle \int {\frac {dx}{\cos ax}}={\frac {1}{a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
d x cos n a x = sin a x a ( n 1 ) cos n 1 a x + n 2 n 1 d x cos n 2 a x (per  n > 1 ) {\displaystyle \int {\frac {dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(per }}n>1{\mbox{)}}\,\!}
d x 1 + cos a x = 1 a tan a x 2 + C {\displaystyle \int {\frac {dx}{1+\cos ax}}={\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
d x 1 cos a x = 1 a cot a x 2 + C {\displaystyle \int {\frac {dx}{1-\cos ax}}=-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
x d x 1 + cos a x = x a tan a x 2 + 2 a 2 ln | cos a x 2 | + C {\displaystyle \int {\frac {x\;dx}{1+\cos ax}}={\frac {x}{a}}\tan {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\cos {\frac {ax}{2}}\right|+C}
x d x 1 cos a x = x a cot a x 2 + 2 a 2 ln | sin a x 2 | + C {\displaystyle \int {\frac {x\;dx}{1-\cos ax}}=-{\frac {x}{a}}\cot {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\sin {\frac {ax}{2}}\right|+C}
cos a x d x 1 + cos a x = x 1 a tan a x 2 + C {\displaystyle \int {\frac {\cos ax\;dx}{1+\cos ax}}=x-{\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
cos a x d x 1 cos a x = x 1 a cot a x 2 + C {\displaystyle \int {\frac {\cos ax\;dx}{1-\cos ax}}=-x-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
cos a 1 x cos a 2 x d x = sin ( a 1 a 2 ) x 2 ( a 1 a 2 ) + sin ( a 1 + a 2 ) x 2 ( a 1 + a 2 ) + C (per  | a 1 | | a 2 | ) {\displaystyle \int \cos a_{1}x\cos a_{2}x\;dx={\frac {\sin(a_{1}-a_{2})x}{2(a_{1}-a_{2})}}+{\frac {\sin(a_{1}+a_{2})x}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(per }}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}

Integrals de funcions trigonomètriques que inclouen només la tangent

tan a x d x = 1 a ln | cos a x | + C = 1 a ln | sec a x | + C {\displaystyle \int \tan ax\;dx=-{\frac {1}{a}}\ln |\cos ax|+C={\frac {1}{a}}\ln |\sec ax|+C\,\!}
tan n a x d x = 1 a ( n 1 ) tan n 1 a x tan n 2 a x d x (per  n 1 ) {\displaystyle \int \tan ^{n}ax\;dx={\frac {1}{a(n-1)}}\tan ^{n-1}ax-\int \tan ^{n-2}ax\;dx\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}
d x q tan a x + p = 1 p 2 + q 2 ( p x + q a ln | q sin a x + p cos a x | ) + C (per  p 2 + q 2 0 ) {\displaystyle \int {\frac {dx}{q\tan ax+p}}={\frac {1}{p^{2}+q^{2}}}(px+{\frac {q}{a}}\ln |q\sin ax+p\cos ax|)+C\qquad {\mbox{(per }}p^{2}+q^{2}\neq 0{\mbox{)}}\,\!}


d x tan a x = 1 a ln | sin a x | + C {\displaystyle \int {\frac {dx}{\tan ax}}={\frac {1}{a}}\ln |\sin ax|+C\,\!}
d x tan a x + 1 = x 2 + 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {dx}{\tan ax+1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
d x tan a x 1 = x 2 + 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {dx}{\tan ax-1}}=-{\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}
tan a x d x tan a x + 1 = x 2 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {\tan ax\;dx}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
tan a x d x tan a x 1 = x 2 + 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {\tan ax\;dx}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}

Integrals de funcions trigonomètriques que inclouen només la secant

sec a x d x = 1 a ln | sec a x + tan a x | + C {\displaystyle \int \sec {ax}\,dx={\frac {1}{a}}\ln {\left|\sec {ax}+\tan {ax}\right|}+C}
sec n a x d x = sec n 1 a x sin a x a ( n 1 ) + n 2 n 1 sec n 2 a x d x  (per  n 1 ) {\displaystyle \int \sec ^{n}{ax}\,dx={\frac {\sec ^{n-1}{ax}\sin {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{ax}\,dx\qquad {\mbox{ (per }}n\neq 1{\mbox{)}}\,\!}
sec n x d x = sec n 2 x tan x n 1 + n 2 n 1 sec n 2 x d x {\displaystyle \int \sec ^{n}{x}\,dx={\frac {\sec ^{n-2}{x}\tan {x}}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{x}\,dx} [1]
d x sec x + 1 = x tan x 2 + C {\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}+C}

Integrals de funcions trigonomètriques que inclouen només la cosecant

csc a x d x = 1 a ln | csc a x + cot a x | + C {\displaystyle \int \csc {ax}\,dx=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C}
csc 2 x d x = cot x + C {\displaystyle \int \csc ^{2}{x}\,dx=-\cot {x}+C}
csc n a x d x = csc n 1 a x cos a x a ( n 1 ) + n 2 n 1 csc n 2 a x d x  (per  n 1 ) {\displaystyle \int \csc ^{n}{ax}\,dx=-{\frac {\csc ^{n-1}{ax}\cos {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{ax}\,dx\qquad {\mbox{ (per }}n\neq 1{\mbox{)}}\,\!}

Integrals de funcions trigonomètriques que contenen només la cotangent

cot a x d x = 1 a ln | sin a x | + C {\displaystyle \int \cot ax\;dx={\frac {1}{a}}\ln |\sin ax|+C\,\!}
cot n a x d x = 1 a ( n 1 ) cot n 1 a x cot n 2 a x d x (per  n 1 ) {\displaystyle \int \cot ^{n}ax\;dx=-{\frac {1}{a(n-1)}}\cot ^{n-1}ax-\int \cot ^{n-2}ax\;dx\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}
d x 1 + cot a x = tan a x d x tan a x + 1 {\displaystyle \int {\frac {dx}{1+\cot ax}}=\int {\frac {\tan ax\;dx}{\tan ax+1}}\,\!}
d x 1 cot a x = tan a x d x tan a x 1 {\displaystyle \int {\frac {dx}{1-\cot ax}}=\int {\frac {\tan ax\;dx}{\tan ax-1}}\,\!}

Integrals de funcions trigonomètriques que inclouen ambdós sinus i cosinus

d x cos a x ± sin a x = 1 a 2 ln | tan ( a x 2 ± π 8 ) | + C {\displaystyle \int {\frac {dx}{\cos ax\pm \sin ax}}={\frac {1}{a{\sqrt {2}}}}\ln \left|\tan \left({\frac {ax}{2}}\pm {\frac {\pi }{8}}\right)\right|+C}
d x ( cos a x ± sin a x ) 2 = 1 2 a tan ( a x π 4 ) + C {\displaystyle \int {\frac {dx}{(\cos ax\pm \sin ax)^{2}}}={\frac {1}{2a}}\tan \left(ax\mp {\frac {\pi }{4}}\right)+C}
d x ( cos x + sin x ) n = 1 n 1 ( sin x cos x ( cos x + sin x ) n 1 2 ( n 2 ) d x ( cos x + sin x ) n 2 ) {\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}}}\right)}
cos a x d x cos a x + sin a x = x 2 + 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {\cos ax\;dx}{\cos ax+\sin ax}}={\frac {x}{2}}+{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
cos a x d x cos a x sin a x = x 2 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {\cos ax\;dx}{\cos ax-\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
sin a x d x cos a x + sin a x = x 2 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {\sin ax\;dx}{\cos ax+\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
sin a x d x cos a x sin a x = x 2 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {\sin ax\;dx}{\cos ax-\sin ax}}=-{\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
cos a x d x sin a x ( 1 + cos a x ) = 1 4 a tan 2 a x 2 + 1 2 a ln | tan a x 2 | + C {\displaystyle \int {\frac {\cos ax\;dx}{\sin ax(1+\cos ax)}}=-{\frac {1}{4a}}\tan ^{2}{\frac {ax}{2}}+{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
cos a x d x sin a x ( 1 + cos a x ) = 1 4 a cot 2 a x 2 1 2 a ln | tan a x 2 | + C {\displaystyle \int {\frac {\cos ax\;dx}{\sin ax(1+-\cos ax)}}=-{\frac {1}{4a}}\cot ^{2}{\frac {ax}{2}}-{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
sin a x d x cos a x ( 1 + sin a x ) = 1 4 a cot 2 ( a x 2 + π 4 ) + 1 2 a ln | tan ( a x 2 + π 4 ) | + C {\displaystyle \int {\frac {\sin ax\;dx}{\cos ax(1+\sin ax)}}={\frac {1}{4a}}\cot ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
sin a x d x cos a x ( 1 sin a x ) = 1 4 a tan 2 ( a x 2 + π 4 ) 1 2 a ln | tan ( a x 2 + π 4 ) | + C {\displaystyle \int {\frac {\sin ax\;dx}{\cos ax(1-\sin ax)}}={\frac {1}{4a}}\tan ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
sin a x cos a x d x = 1 2 a sin 2 a x + c {\displaystyle \int \sin ax\cos ax\;dx={\frac {1}{2a}}\sin ^{2}ax+c\,\!}
sin a 1 x cos a 2 x d x = cos ( a 1 + a 2 ) x 2 ( a 1 + a 2 ) cos ( a 1 a 2 ) x 2 ( a 1 a 2 ) + C (per  | a 1 | | a 2 | ) {\displaystyle \int \sin a_{1}x\cos a_{2}x\;dx=-{\frac {\cos(a_{1}+a_{2})x}{2(a_{1}+a_{2})}}-{\frac {\cos(a_{1}-a_{2})x}{2(a_{1}-a_{2})}}+C\qquad {\mbox{(per }}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}
sin n a x cos a x d x = 1 a ( n + 1 ) sin n + 1 a x + C (per  n 1 ) {\displaystyle \int \sin ^{n}ax\cos ax\;dx={\frac {1}{a(n+1)}}\sin ^{n+1}ax+C\qquad {\mbox{(per }}n\neq -1{\mbox{)}}\,\!}
sin a x cos n a x d x = 1 a ( n + 1 ) cos n + 1 a x + C (per  n 1 ) {\displaystyle \int \sin ax\cos ^{n}ax\;dx=-{\frac {1}{a(n+1)}}\cos ^{n+1}ax+C\qquad {\mbox{(per }}n\neq -1{\mbox{)}}\,\!}
sin n a x cos m a x d x = sin n 1 a x cos m + 1 a x a ( n + m ) + n 1 n + m sin n 2 a x cos m a x d x (per  m , n > 0 ) {\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;dx=-{\frac {\sin ^{n-1}ax\cos ^{m+1}ax}{a(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}ax\cos ^{m}ax\;dx\qquad {\mbox{(per }}m,n>0{\mbox{)}}\,\!}
també: sin n a x cos m a x d x = sin n + 1 a x cos m 1 a x a ( n + m ) + m 1 n + m sin n a x cos m 2 a x d x (per  m , n > 0 ) {\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;dx={\frac {\sin ^{n+1}ax\cos ^{m-1}ax}{a(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}ax\cos ^{m-2}ax\;dx\qquad {\mbox{(per }}m,n>0{\mbox{)}}\,\!}
d x sin a x cos a x = 1 a ln | tan a x | + C {\displaystyle \int {\frac {dx}{\sin ax\cos ax}}={\frac {1}{a}}\ln \left|\tan ax\right|+C}
d x sin a x cos n a x = 1 a ( n 1 ) cos n 1 a x + d x sin a x cos n 2 a x (per  n 1 ) {\displaystyle \int {\frac {dx}{\sin ax\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+\int {\frac {dx}{\sin ax\cos ^{n-2}ax}}\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}
d x sin n a x cos a x = 1 a ( n 1 ) sin n 1 a x + d x sin n 2 a x cos a x (per  n 1 ) {\displaystyle \int {\frac {dx}{\sin ^{n}ax\cos ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+\int {\frac {dx}{\sin ^{n-2}ax\cos ax}}\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}
sin a x d x cos n a x = 1 a ( n 1 ) cos n 1 a x + C (per  n 1 ) {\displaystyle \int {\frac {\sin ax\;dx}{\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+C\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}
sin 2 a x d x cos a x = 1 a sin a x + 1 a ln | tan ( π 4 + a x 2 ) | + C {\displaystyle \int {\frac {\sin ^{2}ax\;dx}{\cos ax}}=-{\frac {1}{a}}\sin ax+{\frac {1}{a}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {ax}{2}}\right)\right|+C}
sin 2 a x d x cos n a x = sin a x a ( n 1 ) cos n 1 a x 1 n 1 d x cos n 2 a x (per  n 1 ) {\displaystyle \int {\frac {\sin ^{2}ax\;dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}
sin n a x d x cos a x = sin n 1 a x a ( n 1 ) + sin n 2 a x d x cos a x (per  n 1 ) {\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ax}}=-{\frac {\sin ^{n-1}ax}{a(n-1)}}+\int {\frac {\sin ^{n-2}ax\;dx}{\cos ax}}\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}
sin n a x d x cos m a x = sin n + 1 a x a ( m 1 ) cos m 1 a x n m + 2 m 1 sin n a x d x cos m 2 a x (per  m 1 ) {\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ^{m}ax}}={\frac {\sin ^{n+1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}ax\;dx}{\cos ^{m-2}ax}}\qquad {\mbox{(per }}m\neq 1{\mbox{)}}\,\!}
també: sin n a x d x cos m a x = sin n 1 a x a ( n m ) cos m 1 a x + n 1 n m sin n 2 a x d x cos m a x (per  m n ) {\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ^{m}ax}}=-{\frac {\sin ^{n-1}ax}{a(n-m)\cos ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}ax\;dx}{\cos ^{m}ax}}\qquad {\mbox{(per }}m\neq n{\mbox{)}}\,\!}
també: sin n a x d x cos m a x = sin n 1 a x a ( m 1 ) cos m 1 a x n 1 m 1 sin n 2 a x d x cos m 2 a x (per  m 1 ) {\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ^{m}ax}}={\frac {\sin ^{n-1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-2}ax\;dx}{\cos ^{m-2}ax}}\qquad {\mbox{(per }}m\neq 1{\mbox{)}}\,\!}
cos a x d x sin n a x = 1 a ( n 1 ) sin n 1 a x + C (per  n 1 ) {\displaystyle \int {\frac {\cos ax\;dx}{\sin ^{n}ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+C\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}
cos 2 a x d x sin a x = 1 a ( cos a x + ln | tan a x 2 | ) + C {\displaystyle \int {\frac {\cos ^{2}ax\;dx}{\sin ax}}={\frac {1}{a}}\left(\cos ax+\ln \left|\tan {\frac {ax}{2}}\right|\right)+C}
cos 2 a x d x sin n a x = 1 n 1 ( cos a x a sin n 1 a x ) + d x sin n 2 a x ) (per  n 1 ) {\displaystyle \int {\frac {\cos ^{2}ax\;dx}{\sin ^{n}ax}}=-{\frac {1}{n-1}}\left({\frac {\cos ax}{a\sin ^{n-1}ax)}}+\int {\frac {dx}{\sin ^{n-2}ax}}\right)\qquad {\mbox{(per }}n\neq 1{\mbox{)}}}
cos n a x d x sin m a x = cos n + 1 a x a ( m 1 ) sin m 1 a x n m 2 m 1 cos n a x d x sin m 2 a x (per  m 1 ) {\displaystyle \int {\frac {\cos ^{n}ax\;dx}{\sin ^{m}ax}}=-{\frac {\cos ^{n+1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-m-2}{m-1}}\int {\frac {\cos ^{n}ax\;dx}{\sin ^{m-2}ax}}\qquad {\mbox{(per }}m\neq 1{\mbox{)}}\,\!}
també: cos n a x d x sin m a x = cos n 1 a x a ( n m ) sin m 1 a x + n 1 n m cos n 2 a x d x sin m a x (per  m n ) {\displaystyle \int {\frac {\cos ^{n}ax\;dx}{\sin ^{m}ax}}={\frac {\cos ^{n-1}ax}{a(n-m)\sin ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cos ^{n-2}ax\;dx}{\sin ^{m}ax}}\qquad {\mbox{(per }}m\neq n{\mbox{)}}\,\!}
també: cos n a x d x sin m a x = cos n 1 a x a ( m 1 ) sin m 1 a x n 1 m 1 cos n 2 a x d x sin m 2 a x (per  m 1 ) {\displaystyle \int {\frac {\cos ^{n}ax\;dx}{\sin ^{m}ax}}=-{\frac {\cos ^{n-1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\cos ^{n-2}ax\;dx}{\sin ^{m-2}ax}}\qquad {\mbox{(per }}m\neq 1{\mbox{)}}\,\!}

Integrals de funcions trigonomètriques que inclouen ambdós sinus i tangent

sin a x tan a x d x = 1 a ( ln | sec a x + tan a x | sin a x ) + C {\displaystyle \int \sin ax\tan ax\;dx={\frac {1}{a}}(\ln |\sec ax+\tan ax|-\sin ax)+C\,\!}
tan n a x d x sin 2 a x = 1 a ( n 1 ) tan n 1 ( a x ) + C (per  n 1 ) {\displaystyle \int {\frac {\tan ^{n}ax\;dx}{\sin ^{2}ax}}={\frac {1}{a(n-1)}}\tan ^{n-1}(ax)+C\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}

Integrals de funcions trigonomètriques que inclouen ambdós cosinus i tangent

tan n a x d x cos 2 a x = 1 a ( n + 1 ) tan n + 1 a x + C (per  n 1 ) {\displaystyle \int {\frac {\tan ^{n}ax\;dx}{\cos ^{2}ax}}={\frac {1}{a(n+1)}}\tan ^{n+1}ax+C\qquad {\mbox{(per }}n\neq -1{\mbox{)}}\,\!}

Integrals de funcions trigonomètriques que inclouen ambdós sinus i cotangent

cot n a x d x sin 2 a x = 1 a ( n + 1 ) cot n + 1 a x + C (per  n 1 ) {\displaystyle \int {\frac {\cot ^{n}ax\;dx}{\sin ^{2}ax}}={\frac {1}{a(n+1)}}\cot ^{n+1}ax+C\qquad {\mbox{(per }}n\neq -1{\mbox{)}}\,\!}

Integrals de funcions trigonomètriques que inclouen ambdós cosinus i cotangent

cot n a x d x cos 2 a x = 1 a ( 1 n ) tan 1 n a x + C (per  n 1 ) {\displaystyle \int {\frac {\cot ^{n}ax\;dx}{\cos ^{2}ax}}={\frac {1}{a(1-n)}}\tan ^{1-n}ax+C\qquad {\mbox{(per }}n\neq 1{\mbox{)}}\,\!}

Integrals de funcions trigonomètriques amb limits simètrics

c c sin x d x = 0 {\displaystyle \int _{-c}^{c}\sin {x}\;dx=0\!}
c c cos x d x = 2 0 c cos x d x = 2 c 0 cos x d x = 2 sin c {\displaystyle \int _{-c}^{c}\cos {x}\;dx=2\int _{0}^{c}\cos {x}\;dx=2\int _{-c}^{0}\cos {x}\;dx=2\sin {c}\!}
c c tan x d x = 0 {\displaystyle \int _{-c}^{c}\tan {x}\;dx=0\!}

Integral en un cercle complet

0 2 π sin 2 m + 1 x cos 2 n + 1 x d x = 0 n , m Z {\displaystyle \int _{0}^{2\pi }\sin ^{2m+1}{x}\cos ^{2n+1}{x}\,dx=0\!\qquad n,m\in \mathbb {Z} }

Referències

  1. Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008
  • Vegeu aquesta plantilla
Càlcul de primitives
a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx}
Taules d'integrals
Definicions d'integració
Extensions de la integral
Integració numèrica
  • Vegeu aquesta plantilla
Funcions
trigonomètriques
Sinus (sin) · Cosinus (cos) · Tangent (tan) · Cotangent (cot) · Secant (sec) · Cosecant (csc) · Versinus (versin) · Coversinus (coversin) · Semiversinus (semiversin) · Vercosinus (vercos) · Exsecant (exsec) · Excosecant (excsc)
Funcions
trigonomètriques
inverses
Arcsinus (arcsin) · Arccosinus (arccos) · Arctangent (arctan) · Arccotangent (arccotan) · Arcsecant (arcsec) · Arccosecant (arccosec)
Teoremes
Fòrmules
Vegeu també